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Abstract 

Resource estimation techniques have upgraded over the past couple of years, thereby improving resource estimates. The 

classical method of estimation is less used in ore grade estimation than geostatistics (kriging) which proved to provide more 

accurate estimates by its ability to account for the geology of the deposit and assess error. Geostatistics has therefore been said 

to be superior over the classical methods of estimation. However, due to the complexity of using geostatistics in resource 

estimation, its time-consuming nature, the susceptibility to errors due to human interference, the difficulty in applying it to 

deposits with few data points and the difficulty in using it to estimate complicated deposits paved the way for the application 

of Artificial Intelligence (AI) techniques to be applied in ore grade estimation. AI techniques have been employed in diverse 

ore deposit types for the past two decades and have proven to provide comparable or better results than those estimated with 

kriging. This research aimed to review and compare the most commonly used kriging methods and AI techniques in ore grade 

estimation of complex structurally controlled vein deposits. The review showed that AI techniques outperformed kriging 

methods in ore grade estimation of vein deposits.  
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1 Introduction 
 

Mineral resource estimates are the basis for 

undertaking a mining project; so, it is necessary to 

get the estimates of a deposit accurate enough to 

prevent erroneous financial expectations. 

Geostatistics is the most popular technique for 

resource estimation. Its efficiency and supremacy 

have been demonstrated in several studies (Samanta 

et al., 2005a). However, in recent times, due to 

Neural Network (NN) advancements, it has emerged 

as an alternative ore grade estimation method. The 

principle of operation of these NN techniques is 

quite different. Geostatistical techniques, such as 

kriging, operate under the assumption of stationarity 

(Pan et al., 1993; Yamamoto, 2000; Chatterjee et al., 

2010) and produce linear models based on local 

neighbourhood structures (Tahmasebi and 

Hezarkhani, 2010a). On the other hand, NN is a 

nonlinear estimator, making it robust with noisy data 

as in the case of vein deposits. The presence of 

multiple lithological types and the nature of the 

formation can cause kriging to underperform in 

predicting the distribution of ore grade (Chatterjee 

et al., 2006). In the past decade, the efforts to 

minimise the effects of assumptions using 

geostatistics resulted in various researchers (Rizzo 

and Dougherty, 1994; Samanta et al., 2005b; 

Samanta et al., 2004a; 2004b; Dowd and Saraq, 

1994; Koike et al., 2001; 2002; Matías et al., 2004; 

Chatterjee et al., 2006) developing different 

approaches in geostatistics and NNs for ore grade 

estimation. The popularity of NNs in ore grade 

estimation stems from its flexibility and ability to 

include nonlinear relationships between input and 

output data (Bishop, 1995; Chatterjee et al., 2006). 

This paper aimed to review the most commonly used 

kriging methods and AI techniques used to estimate 

ore grade in vein deposits, compare the results, and 

highlight the better estimation technique. 

 

1.1 Overview of Vein Deposits 
 

Vein deposits,  also known as ‘lodes’ or ‘reefs’, can 

be defined as fractures or fissures filled with 

solidified minerals and are mostly known as tabular 

domains dipping at an angle from the horizontal 

(Dominy et al., 1999b). These type of deposits are 

known to be about 3 m wide (Dominy et al., 1999a; 

1999b). Most narrow auriferous veins possess 

visible gold erratically disseminated within the 

orebody which can easily be extracted by gravity 

separation. According to Dominy et al. (1999b), 

faults or shear zones are known to host veins 

occurring in structures/fractures (either single or 

multiple structures). Since the structure of vein 

deposits is highly related to geometry, the 

geometrical properties such as dip, strike, and width 

continuously vary throughout the deposit's entire 

length, leading to its complex nature (Dominy et al., 

1999b). Narrow vein deposits generally exhibit the 

deposition of both high-grade and low-grade values 

disseminated within the deposit. Due to this, the 

grade distribution typically display a positively 

skewed distribution characterised by many low-

grade values and randomly distributed few high-

grade values (Dominy et al., 1999b; Roy, 2000). 

Also, the mineralised zone may not be distributed 

throughout the entire vein but can be restricted to a 

particular structure which sometimes exhibits multi-

stage deposition. 
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1.2 Classical and Distance Weighting 

Methods  
 

The classical and distance weighting techniques are 

methods used in ore grade estimation. The classical 

methods include the polygonal, triangular and cross-

sectional estimation methods while the types of 

distance weighting techniques include the Inverse 

Distance Weighting (IDW) method (Sinclair and 

Blackwell, 2004). Resource geologists employ these 

techniques to estimate grade values which are then 

assigned to blocks within the deposit, resulting in 

possible in erroneous estimates. 

 

The classical methods of grade estimation were 

mostly used before the age of computers, and are 

still used to quickly estimate resources regardless of 

their shortcoming.  

 

The polygonal method of estimation uses drill hole 

data where the average grade of the surrounding drill 

holes is assigned to the polygon's entire area. This 

method of estimation is also mostly applied to 

simple-to-moderate geometry orebodies with 

minimal grade variability.  

 

The triangular estimation method builds each 

triangle from three adjacent drill holes with the 

triangular area, receiving three average grades. The 

mineral reserves are determined by each triangle's 

area, together with its weighted thickness and grade. 

The mean grade for each triangle, GT, is given by 

Equation (1) (Sinclair and Blackwell, 2004): 
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where: Gi = grade of each vertex; and VTi = Vertical 

thickness at each sample location forming the 

triangular block. The main problems associated with 

this estimation method are that: anisotropies are not 

often considered using the same corner point grade 

and thickness for more than one-grade calculation 

eventually influences the grade estimates. 

 

The cross-sectional method of grade estimation is 

executed by delineating ore zones, through drawing 

perimeters based on cut-off grade, in sections which 

are either regularly or irregularly spaced along the 

entire orebody. The influence areas are assigned 

grades by expanding the drill hole samples halfway 

to adjacent drill holes and sections (Kapageridis, 

1999; Sinclair and Blackwell, 2004). This 

estimation method can be applied to deposits with 

sharp and relatively smooth contacts such as tabular 

deposits. As a result, the cross-sectional technique is 

known to depict strong geological controls. 

However, it is affected by the irregularity of ore-

waste contact; hence, the unknown quantity of waste 

included can cause overestimation of grade. In 

estimating the resources using the cross-sectional 

method, the mean grade of each section is computed 

by weighting the sample grades by their lengths. 

With this, the global mean grade is achieved as the 

weighted mean grade of the sections by volume or 

tonnage, as shown in Equations (2) and (3) (Ilham 

and Matrani, 2020). The global tonnage can also be 

calculated using Equation (3). 
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where: TG = Global tonnage; GG = Global mean 

grade; Tsi = Tonnage of section, si; and Gsi = Mean 

grade of material in section, si. 

 

Thus, the classical methods are known to estimate 

the resources in wider and uniform deposits as 

inferred from the previous sections. Hence, due to 

the narrow nature of vein deposits and random grade 

distribution, applying classical methods in the grade 

estimation process produce biased estimates 

resulting in overestimation or underestimation. 

  

Resource estimation conducted using the IDW 

method is achieved by assigning a linear 

combination of grades of the surrounding samples to 

a block or a point. With this method, samples' 

properties are assumed to be more identical once 

they are taken closer to each other than when they 

are taken farther apart. The general, IDW, is given 

by Equation (4) (Rossi and Deutsch, 2014): 
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where ZB is the estimated variable of the block (of 

grade, thickness or accumulation); Zi is the value of 

the sample at location i; di is the separation distance 

from point i to the point of reference; and n is the 

power index (a positive integer). The value of “n” is 

chosen arbitrarily, but is often based on the type of 

deposit being dealt with. Hence, the power index is 

directly related to the degree of continuity of the 

grade variation. A continuous grade variation 

indicates that two close samples tend to give more 

identical information about the deposits’ 

characteristics than two samples taken farther apart. 

Therefore, a high power index is used to minimise 

the influence of distant samples. The power index, 

n, can take values from 0 to infinity; but the 

commonest value is 2. According to Kapageridis 

(1999), the IDW is mostly applied to deposits with 
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reasonable geometry with low to high-grade 

variability.  

 

The distance weighting technique is an 

improvement of the classical methods. This method 

is best applied in uniform orebodies. However, when 

used in estimating the resources in vein deposits, the 

results obtained are not optimum due to the complex 

grade distribution. On the contrary, estimates 

obtained are less biased as compared to the classical 

methods. Also, to improve estimates, errors must be 

accounted for, assessed and minimised by making 

adjustments in the estimation of grade. Hence, once 

the resource is estimated using IDW or a classical 

method, the errors are evaluated to check the 

accuracy of the estimates.  

 

1.3 Geostatistics  
 

Geostatistics began in the early 1960s by Matheron 

and Krige for mineral resource estimation. The 

concept of geostatistics is a combination of various 

sciences such as geology, statistics, and probability 

theory (Kapageridis, 1999). This concept works best 

when the samples within an orebody are spatially 

correlated. The various sciences that makeup 

geostatistics make the estimation process extremely 

complicated in its application to resource estimation 

for any given amount of data. Also, the theory of 

regionalised variables forms the basis of 

geostatistical methodology. According to Journel 

and Huijbregts (1978), the spatial distribution of 

several measurable quantities can be characterised 

for every mineralised zone. In a geostatistical 

analysis, the orebody's geological nature is first of 

all modelled after which the structures 

characterising the spatial variability of ore grades 

using variograms are examined (Kapageridis, 1999; 

Dominy et al., 2002; Dutta et al., 2010). This semi-

variogram is computed using Equation (5) (Bohling, 

2005). 
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where u  is the vector of coordinates; z(u) is the 

variable under consideration as a function of spatial 

location; h is the vector between the two; N (h) is the 

number of pairs found at distance h apart; and Z (u 

+ h) is the value of a second variable at location h 

units from u. 

 

Once the semi-variogram is modelled, grade 

interpolation and estimation are done using kriging, 

a geostatistical method (Kapageridis, 1999; Sinclair 

and Deraisme, 1974). Kriging is applied based on 

grade continuity as depicted in the variograms and 

the sample positions. By this, it calculates the 

optimal weights by assessing the minimum 

estimation variance obtained from the generated 

variograms. Therefore, Kriging is a step-up of the 

IDW method since it is based not only on distance 

but also on spatial variability and possible 

anisotropy.  

 

From the analysis made, the clear definition of an 

orebody's geological controls allows for more 

representative grade estimation. However, 

variogram analysis can easily be done for massive 

and uniform orebodies compared to structurally 

controlled deposits due to multiple structures at the 

boundaries of the mineralised zone. In estimating 

the resources in a vein deposit, the significant errors 

that have the greatest impact occurs during the 

definition of the orebody's geometry (Deutsh, 1989; 

Dominy et al., 1999a), which is paramount in 

resource estimation (Roy, 2000).  

 

Although geostatistics is claimed to be the best in 

resource estimation (Rossi and Deutsch, 2014), it 

has a limitation since it is unable to effectively tackle 

the clear definition of geological controls of 

structurally controlled deposits (Sinclair and 

Deraisme, 1974; Dominy et al., 1997; Roy, 2000; 

Dominy et al., 2004). Due to this, in the research of 

Dominy et al. (1999a), the authors stated that in 

estimating the resources in narrow veins, classical or 

geostatistical methods could be used; however, 

classical techniques are often used due to the 

difficulty in applying geostatistical methods (Roy, 

2000). In applying the non-geostatistical methods in 

resource estimation of narrow veins, outlier values 

can cause overestimation of the resources whereas 

outlier values in geostatistics can result in distorted 

variograms due to high nugget effect, which renders 

the variograms useless for onward estimation (Roy, 

2000; Dominy et al., 1999a). The outlier values 

encountered are ‘cut’ to a specific value (Deutsh, 

1989; Dominy et al., 1999a; Fytas et al., 1990) 

which is often determined through the experience of 

the resource estimator (Dominy et al., 1999a; Fytas 

et al., 1990; Roy, 2000). Some ways of cutting the 

values are highlighted by Roy (2000). The main aim 

of cutting the high-grade values is to alter the 

samples' distribution to prevent overestimating the 

mean grade values. On the contrary, these 

manipulations can result in estimation errors, 

leading to underestimating grades and 

overestimating material quantity (Fytas et al., 1990). 

 

Ordinary Kriging (OK), the fundamental kriging 

method, faces the same challenges of overestimating 

skewed distributions as in non-geostatistical 

resource estimation methods. Due to this challenge, 

several kriging methods have been developed over 

the years to fix this problem; but this has resulted in 

more time consuming, complicated and overly 

expensive resource estimation processes than OK 

(Roy, 2000). These kriging methods include 

indicator kriging (Fytas et al., 1990; Journel, 1983; 
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Journel, 1984; Kwa and Mousset-Jones, 1986; 

Roditis, 1986), disjunctive kriging (Yates et 

al.,1986; Ortiz et al., 2005), multigaussian kriging 

(Verly, 1983), probability kriging (Journel, 1985; 

Verly and Sullivan, 1985), lognormal kriging 

(Armstrong and Boufassa, 1988), outlier restricted 

kriging (Arik, 1992) and cokriging (Pan et al., 1993)  

 

In summary, geostatistics applies a local 

neighbourhood search to develop a local fitting 

model. The values obtained at nearby sample points 

are used to predict the value at an unknown point 

using a linear combination of weights (Samanta et al., 

2004a). The weight assigned to a sample point 

depends on the spatial correlation structure of the 

deposit obtained by the variogram model of the data; 

and as such is not ideal in estimating the resources in 

vein deposits due to the heterogenous grade 

distribution. 

 

1.3.1 Structural Analysis 

Structural analysis is the most crucial step as the 

parameters obtained from the variogram analysis 

determine if geostatistics can estimate the mineral of 

interest. In conducting structural analysis, a semi-

variogram must be modelled using the sample data 

to check the orebody's continuity and structure under 

consideration. The results obtained from the semi-

variogram model serve as a quantitative summary of 

all available structural information for resource 

estimation. The data obtained represent the 

regionalised variables distributed throughout a 

given space (Journel and Huijbregts, 1978; Roy, 

2000). These variables possess two main 

characteristics: local randomness (indicating 

random variation) and the structural pattern 

characterised by a function (Roy, 2000). However, 

under strict stationarity, the geospatial structure 

must remain the same under translation (Journel and 

Huijbregts, 1978; Roy, 2000). Hence, according to 

Roy (2000), the expected mean should remain 

constant in all directions; however, quasi-

stationarity is perceived to exist in practice where 

the spatial structure is presumed to be unchanging 

for a given distance. 

 

The sample data obtained from structurally 

controlled deposits usually contain multiple outlier 

values. Therefore structural analysis in geostatistics, 

which generally results in distorted variograms due 

to nugget effect renders the variograms useless 

(Roy, 2000; Dominy et al., 1999a) for onward 

estimation. 

 

1.3.2 Grade Estimation 

The information required for the estimation process 

itself is embodied in the semi-variogram model. 

This variogram is used to analyse the variability of 

the grade throughout a given space. Kriging is 

employed for the grade estimation process using the 

variogram parameters. In kriging, each sample is 

assigned a weight which is then linearly combined 

to minimise the estimated variance. Doing so 

minimises the anticipated error between the 

estimated grade and the actual grade (Roy, 2000). 

The estimation variance obtained is essential in 

reviewing the accuracy of the estimates. 

In vein deposits, the actual grade estimation 

becomes problematic as the variogram values 

required to undertake the grade estimation activity 

are rendered confusing. This is where the resource 

estimator relies on experience by making 

assumptions about the variogram parameters to 

estimate the grade values. 

1.3.3 Geostatistics for Vein Deposit Estimation 

Daya (2012) estimated the resources in the Iran 

Choghart north hydrothermal iron ore deposit made 

up of veinlets. The statistical analysis of the data 

showed a gaussian distribution which was 

transformed into a gaussian anamorphosis 

transformation. The empirical variograms generated 

for structural analysis indicated that at multiple 

directions, no geometric anisotropy occurred since 

the same range of sills were obtained. This deposit 

was estimated using OK to estimate the grade of iron 

in the deposit. OK was again applied by Daya (2015) 

to estimate the resources of a vein-type copper 

deposit in Iran that virtually had the same structural 

properties as the iron ore deposit.  

Roy (2000) estimated the Poura deposit, which 

consists of steeply dipping gold-silver mineralised 

quartz veins with an average thickness of 2 m. Semi-

variograms and OK were used for estimating grade 

and thickness. The researcher, however, developed 

a computer block kriging program called Krige2D 

for his kriging calculations. There was no 

correlation between grade and vein thickness, grade 

and depth, or grade and distance along strike in the 

statistical analysis. The grade and vein thickness 

indicated lognormality with the histogram of the 

thickness showing spikes.  The variograms 

generated demonstrated a pure nugget effect. The 

researcher explained that OK mostly overestimates 

the grade of deposits when the distribution is 

skewed. However, according to Dominy et al. 

(1997), Dominy et al. (1999a) and Fytas et al. 

(1990), once the coefficient of variation is less than 

one, OK works well. Despite this condition, the 

researcher went ahead to use OK even though the 

grade distribution was skewed, and the coefficient of 

variation of the grade was 1.1. Krige2D estimated 

the resources quite well since the undiluted 

resources decreased by 21%; the mean value of 

confidence increased with the average grade 

decreasing by 9%. 
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Dominy et al. (1997; 1999a; 1999b) assessed the 

challenges in resource estimation of  vein deposits 

leading to the poor applicability of geostatistics in 

ore grade estimation. 

 

Sinclair and Deraisme (1974) applied OK in 

estimating the mineral resource of the Eagle Copper 

Vein deposit in British Columbia. The deposit was a 

sulphide mineralised quartz vein with an average 

thickness of 1.2 m, consisting mainly of 

chalcopyrite, some amounts of pyrite and covellite. 

The main parameters estimated were accumulation 

and vein thickness which gave lognormal 

distributions signifying skewed distributions. The 

data obtained were from three parallel drifts, which 

resulted in the inability to check for anisotropy, 

thereby causing the authors to assume the deposit to 

be isotropic. Hence, the variograms generated for 

the horizontal direction that appeared to be sinuous 

were assumed to be similar to the other directions. 

Therefore, there was a kriging problem in the 

remaining two dimensions that the authors resolved 

by calculating the actual distances between paired 

samples throughout the vein's vertical and horizontal 

positions to obtain an “unfolded” or “flattened” vein 

deposit. Two main structures were identified for 

vein thickness and accumulation. Therefore, the 

variograms quantified the geometric form of the 

deposit. The local grade estimation results obtained 

using OK were not good (relative standard deviation 

for the grade was 21.9%) but at the time of the 

research, it was the best possible result based on the 

available data.  

1.4 Artificial Intelligence  
 

John McCarthy was the first to propose the concept 

of Artificial Intelligence (AI) in 1956 at the 

Dartmouth Conference (McCarthy et al., 2006). 

However, the ability to make machines think and 

learn just like humans was introduced by Alan 

Turing (Muggleton, 2014). Artificial Neural 

Network (ANN) is a branch of AI. ANN is a 

combination of processing systems modelled after 

the brain's neural structure using artificial systems to 

form a computational structure (Dutta et al., 2010; 

Diepen et al., 2017). These scientists, therefore, laid 

the foundation for AI to become what it is today. AI 

can, thus, be explained as the branch of computer 

science that creates intelligent machines to operate 

as humans. AI aims at developing intelligent 

machines by programming computers to possess 

traits such as knowledge, learning, reasoning, 

perception, problem-solving and the ability to 

manipulate and move objects. 

The recent developments in computing have paved 

the way for AI techniques like Machine Learning 

Algorithms (MLA) that operate non-linearly in 

estimating resources  (Li et al., 2010; Dutta et al., 

2010). These AI techniques can learn the causal 

functional relationship existing between available 

data samples  (Dutta et al., 2010). The input data is 

trained to give the AI technique the ability to learn 

relationships between input and output patterns for 

adequate prediction of values such as grade values 

unsampled areas  (Dutta et al., 2010). 

 

Before data is analysed in an ANN, it is vital to 

adequately divide the data for analysis and 

prediction, unlike geostatistics, that does not require 

data segmentation. The data obtained is usually 

divided into training, testing and validation datasets. 

The training data sets are used to train the network 

resulting in its ability to learn.  

The basic ANN structure (Fig. 1) has three layers 

which is made up of the input, hidden and the output; 

however, multiple hidden layers are accepted in the 

ANN structure. External input parameters are 

received into the network through the input layer at 

each input neuron ( )1 2 3, , ,...,
T

j mX X X X X=  

which are assigned specific weights wkj and a bias bi. 

The input values are then transformed into weighted 

inputs and are transferred to the hidden layer. A 

mathematical nonlinear activation function in the 

hidden layer is then used to decide if the data in the 

input neuron should be activated or not after which 

the transformed data is given out through the output 

neuron. The input of the output layer is obtained 

from the output of the hidden layer. An activation 

function is used to transform the input of the hidden 

layer to the output layer which produces the final 

network output yk. 

Each connection is given its corresponding weight, 

and each signal moving along the linkage is 

multiplied by a  connection weight (Mahmoudabadi 

et al., 2008). Within the ANN structure, there are 

mathematical algorithms that ensure the processing 

and predictability of the network. Some of these 

parameters and algorithms are the weights, biases 

and activation functions.  

  

Fig. 1 Basic Structure of a Layered ANN  
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The artificial neuron is the basic unit of a typical 

ANN that serves as the ANN structure's processing 

element. Fig. 2 shows the artificial representation of 

the mammalian neuron (cell body, axon, synapses, 

and dendrites). The artificial neuron simply 

calculates the weighted sum of input, adds a bias and 

decides if it should be “fired” or not.   

 
Fig. 2 Basic Structure of an Artificial Neuron  

 

The summing junction represents the cell body with 

a bias, bk for increasing or decreasing the output, 

activation function indicates the axon, the synaptic 

weights (wkj) for the synapses, and the input signals 

(xi) signifies the dendrites. Input signals (xi) are sent 

from the user or software to the synaptic weights 

(wkj) to be multiplied where k encompasses a set of 

synapses recognised by weight w. After the 

weighted input signals have been multiplied, they 

are summed up at the summing junction by a linear 

combiner, expressed in Equation (6) (Kapageridis, 

1999).  

1

m

k kj j

j

u w x
=

=         (6) 

 

The bias bk is then applied to the uk to give input (vk) 

to the activation function 𝜑(. ). The activation 

function then limits the amplitude range of the 

neuron’s output to a finite value (Kapageridis, 

1999), expressed mathematically in Equation (7).  

 

( )kk vy =         (7) 

AI techniques have been applied in estimating 

resources due to their computational advancements, 

learning capability, and ability to make no 

assumptions and user-friendliness. Some AI 

techniques have effectively been employed in ore 

grade estimation using few sample data points(Wu 

and Zhou, 1993; Li et al., 2010; Al-Alawi and Tawo, 

1998; Kapageridis and Denby, 1998a; Kapageridis 

and Denby, 1998b; Kapageridis, 2002; Samanta et 

al., 2005b; Mahmoudabadi et al., 2008; Tahmasebi 

and Hezarkhani, 2010b; Zhang et al., 2013). Others 

on the other hand encountered some estimation 

problems at the structural control areas of 

heterogeneous and complicated deposits (Al-Alawi 

and Tawo, 1998). 

 

1.4.1 Artificial Intelligence for Resource Estimation 

AI techniques have been applied in ore grade 

estimation by several researchers (Dowd and Saraq, 

1994; Singer and Kouda, 1996; Kapageridis and 

Denby, 1998b; Koike et al., 2001; Koike and 

Matsuda, 2003; Samanta et al., 2005a; Samanta et 

al., 2004a) due to their ability to handle nonlinear 

data trends. A summary of the AI techniques 

employed in resource estimation is presented in 

Table 1. Most of the AI techniques used in ore grade 

estimation are ANNs as observed in Table 1. 

 

1.5 Merged ANN and Geostatistics for Resource 

Estimation 

 
In some cases, ANN has been merged with 

geostatistics in mineral resource estimation. Jalloh 

et al. (2016) developed a technique called the 

artificial neural network model with geostatistics 

(ANNMG) for 3D geological block modelling in a 

mineral sand deposit. They trained, tested and 

validated the BPNN from exploratory drill holes. 

The validated model was used to generalise the 

mineral grades at known and unknown locations. 

This was then combined with geostatistics to 

develop the 3D model. The model performed well as 

the regression analysis showed that the actual and 

predicted grade values were quite close. Also, 

Dimitrakopoulos (1990;1993) researched AI 

techniques that deal with qualitative information and 

the expert knowledge of geostatisticians, resulting in 

his proposition of artificially intelligent 

geostatistics. The AI model allowed the 

geostatistician to assess, discover and combine 

pieces of relevant rational knowledge and 

information in a given region of analysis. For the 

variogram calculations, the expert system had three 

major parts. The first part of the system was the 

knowledge-based and inference engine 

(feedforward AI network). The second was the 

intelligent interface to the user. While the third part 

was the geostatistical estimation process, which 

included the variogram modelling and grade 

estimation using kriging. The expert model was 

applied in uncertainty estimation of acid deposition 

and porosity characterisation in a 3D petroleum 

reservoir. The results obtained from the expert 

system and conventional geostatistical methods 

produced comparable results. 
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Table 1 Summary AI Techniques Applied in Mineral Resource Estimation 
 

Author(s) Deposit  Technique 

Wu and Zhou (1993) Gold deposit Multilayer Feedforward Neural Network (MLFNN)  

Al-Alawi and Tawo (1998)   Bauxite deposit Backpropagation Neural Network (BPNN) 

Kapageridis (1999), Kapageridis et al. 

(1999a; 1999b; 2000)  

Iron ore Modular neural Network (Radial Basis Function (RBF) with Stuggart Neural Network Simulator 

(SNNS) and Multilayer Perceptron (MLP)) integrated into VULCAN software 

Kapageridis and Denby (1998a; 1998b)  Iron ore Modular neural network made of Radial Basis Function (RBF) and Multilayer Perceptron (MLP) 

Matías et al. (2004)  Slate MLP, Regularisation Networks (RN) and RBFNN 

Samanta et al. (2004b; 2005b)  Gold  Kohonen Neural Network (KNN), MLFNN and Single Layer Feedforward Neural Network 

(SLFN) with the Adaboost algorithm, BPNN 

Chatterjee et al. (2006; 2010)  Limestone, Lead-Zinc ANN, SVM with k-means clustering NN ensemble and GA 

Samanta et al. (2005a)  Bauxite MLFNN-Genetic Algorithm (GA) 

Mahmoudabadi et al. (2008)  Iron ore BPNN-GA  

Samanta and Bandopadhyay (2009) Gold  RBFNN with cooperative evolutionary algorithm 

Badel et al. (2010)  Iron ore MLFNN with k-means clustering and conjugate gradient descent   

Li et al. 2010 Copper  Wavelet Neural Network (WNN) 

Guo (2010)  Iron ore MLFNN with X-Ray Diffraction (XRD)  

Dutta et al. (2006; 2010)  Alumina and Silica, Gold ANN-GA, Support Vector Regression (SVR) and BPNN 

Tahmasebi and Hezarkhani (2010a; 2011)  Iron ore ANN- Fuzzy Logic (ANN-FL) and ANN-GA, MLFNN 

Tahmasebi and Hezarkhani (2010b; 2012) Porphyry copper  Adaptive Neuro-Fuzzy Inference System (ANFIS), GA-ANFIS and GA-Coactive ANFIS 

(CANFIS) 

Gholamnejad et al. (2012), Maleki et al. 

(2014) and Nezamolhossein et al. (2017) 

Iron ore BPNN and Support Vector Machine (SVM), MLFNN 

Granek (2016)  Copper-gold deposit SVM and Convolutional Neural Network (CNN) 

Zhang et al. (2013)  Sulphide deposit Weighted Least Square Support Vector Regression (WLS-SVR)  

Li et al. (2013)  Copper deposit Self-adaptive Learning Particle Swarm Optimisation-SVR (SLPSO-SVR) 

Jafrasteh and Fathianpour (2017)  Phosphate deposit BPNN, Local Linear Radial Basis Function with Skewed activation function (LLRBF-SG), 

Simultaneous Perturbation Artificial Bee Colony algorithm (SPABC)  

Jafrasteh et al. (2018)  Porphyry copper MLP, Random Forest (RF) and Gaussian Process (GP) 

Singh et al. (2018)  Iron ore Recurrent Neural Network (RNN) 

Jahangiri et al. (2018)  Porphyry copper MLFNN with Gustafson-Kessel (GK) clustering algorithm  

Manna et al. (2018)  Copper ore MLFNN with ADAM optimiser 
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2 Resources and Methods Used  
 

2.1 Resources Used 

About 76 papers spanning 40 years from 1974 to 

2018, were used in this review. These resources 

were obtained mainly from Google/Google Scholar 

search engine. Keywords like ore grade estimation 

using AI techniques, mineral resource estimation 

using AI techniques, ore grade estimation of vein 

deposits, mineral resource estimation of vein 

deposits, ore grade estimation of vein deposits using 

geostatistics, mineral resource estimation of vein 

deposits using geostatistics, ore grade estimation of 

vein deposits using kriging, mineral resource 

estimation of vein deposits using kriging, mineral 

resource estimation of vein deposits using classical 

methods of estimation, mineral resource estimation 

of vein deposits using IDW method, ore grade 

estimation of vein deposits using IDW, ore grade 

estimation of vein deposits using AI techniques and 

mineral resource estimation of vein deposits using 

AI techniques were used. Over 30 journals and 

conference proceedings provided papers regarding 

this research. Some of these journals include 

Elsevier, Springer, International Journal of Mining 

Science and Technology, CIM Bulletin, 

Mathematical Geology, Neurocomputing and 

Exploration and Mining Geology.  

Based on the resources used in this study,  Zhang et 

al. (2013) clearly indicated the structural and 

veinlike nature of the sulphide deposit employed in 

their study. The other researchers (Table 1) on the 

other hand did not clearly indicate the vein like 

nature of the deposit. However,  some studies 

showed that their AI techniques were applied in 

heterogenous data sets (Samanta et al., 2004a; 

Jafrasteh et al., 2018; Gholamnejad et al., 2012; 

Tahmasebi and Hezarkhani, 2011; Badel et al., 

2010; Tahmasebi and Hezarkhani, 2010b; 

Mahmoudabadi et al., 2008; Singh et al., 2018; 

Samanta et al., 2005b; Kapageridis, 2002; Wu and 

Zhou, 1993;  Li et al., 2010; Kapageridis and Denby, 

1998a; Al-Alawi and Tawo, 1998) which are 

common in vein deposits. 

2.2 Methods Used 

To determine the performance of AI techniques in 

ore grade estimation, the AI techniques were 

assessed by a thorough review of the papers 

obtained during this study. As such, six categories 

of the performance of AI techniques were obtained 

to capture the studies that fell under those categories. 

The categories used were: AI outperforming kriging 

and other techniques, kriging outperforming AI, 

Kriging and AI performing equally, AI performing 

well without being compared with other techniques, 

AI not performing well without being compared 

with other techniques, and merged AI and 

geostatistics. The Percentage Performance (PP) of 

AI techniques under each category is expressed in 

Equation (8). 

     
100%

 .     Review

Sum of Papers under each Category
PP

Total No of Papers used in
=     (8) 

 

3 Results and Discussion 

 
For the application of AI techniques for ore grade 

estimation, 47 papers were reviewed to determine 

AI's performance, which is summarised in Tables 2 

and 3. 

 

Table 2 Summary of the Performance of AI in 

Ore Grade Estimation 
 

AI 

Outperforming 

Kriging or 

other 

Techniques 

AI Performing 

Well without 

Comparing with 

other 

Techniques 

AI and Kriging 

Performing 

Equally Well 

Chatterjee  et al. 

(2010) 

Tahmasebi and 

Hezarkhani 

(2010a) 

Dutta et al. 

(2006) 

Samanta et al. 

(2004a) 

Gholamnejad et 

al. (2012) 

Samanta et al. 

(2005a) 

Jafrasteh et al. 

(2018) 

Jafrasteh and 

Fathianpour 

(2017) 

Samanta et al. 

(2004b) 

Tahmasebi and 

Hezarkhani 

(2011) 

Manna et al. 

(2018) 

Kapageridis and 

Denby (1998a)  

Kapageridis and 

Denby (1998b) 

Li et al. (2010)  Kapageridis et 

al. (2000) 

Wu and Zhou 

(1993) 

Kapageridis et al. 

(1999a) 

 Nezamolhossein 

et al. (2017) 

Kapageridis 

(2002) 

Guo (2010)  

Mahmoudabadi 

et al. (2008)           

Kapageridis et al. 

(1999b) 

 

Chatterjee et al. 

(2006) 

Tahmasebi and 

Hezarkhani 

(2012) 

 

Al-Alawi and 

Tawo (1998) 

Singer and 

Kouda (1996) 

 

Dutta et al. 

(2010) 

  

Tahmasebi and 

Hezarkhani 

(2010b) 

  

Zhang et al. 

(2013) 

  

Li et al. (2013)   

Koike and 

Matsuda (2003) 

  

Koike et al. 

(2002) 

  

Samanta and 

Bandopadhyay 

(2009) 
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Table 3 Summary of the Performance of AI in 

Ore Grade Estimation 
 

Merged AI 

and 

geostatistics 

Kriging 

outperforming 

AI 

AI not 

performing 

well without 

comparing 

with other 

techniques 

Jalloh et al. 

(2016) 

Singh et al. 

(2018) 

Samanta et al. 

(2005b) 

Dimitrakopou

los (1993) 

Badel et al. 

(2010) 

Maleki et al. 

(2014) 

Dimitrakopou

los (1990) 

Matías et al. 

(2004) 

Granek (2016) 

Koike et al. 

(2001) 

 Jahangiri et al. 

(2018) 

Rizzo and 

Dougherty 

(1994) 

  

Dowd and 

Saraq (1994) 

  

 

Table 2 summarises the various researches where AI 

outperformed kriging and other techniques, AI 

performing well without comparison with other 

methods and AI and kriging performing equally 

well. Kriging outperforming AI, AI not performing 

well and merged AI and geostatistical techniques for 

ore grade estimation are summarised in Table 3. 

In determining the PP of the AI techniques of each 

category, Equation (8) was employed. Hence, 36% 

of the data indicated that AI outperformed kriging 

and other methods. AI performed well 21% of the 

time without being compared with other techniques. 

AI and kriging performed equally well 15% of the 

time. 13% of the research merged AI with 

geostatistics ore grade estimation. Kriging 

outperformed AI 6% of the time. A performance 

chart of the review is shown in Fig. 3. 

 
Fig. 3 Performance of AI for Ore Grade 

Estimation 

 

Based on the study, AI techniques go beyond 

algorithmic programming and works exceptionally 

well for nonlinear input-output mapping (Samanta et 

al., 2004a). In ore grade estimation, NN uses the 

spatial coordinates as input parameters that 

incorporate the spatial relationships with the output, 

grade. In some cases, the lithology is used as an 

input (Chatterjee et al., 2010). The interrelationships 

within the input and output variables are obtained by 

neurons which are a group of processing units 

(Gholamnejad et al., 2012). The interconnected 

spatial relationship of the inputs and output is 

obtained through a series of weighting functions. 

The weights are then altered during the training 

process to guarantee that the outputs are close to the 

actual grade value. During the training process, the 

network learns, which gives it the ability to produce 

good results from the rest of the data that was not 

used during the training process (Samanta et al., 

2004a). 

 

4 Conclusions and Recommendation 

 
4.1 Conclusions  

 
The process of applying geostatistics in ore grade 

estimation involves data preprocessing, structural 

analysis and grade prediction. This makes the 

application of geostatistics in resource estimation 

lengthy and time-consuming. Nonetheless, 

geostatistics and ANNs (Table 1) are currently the 

two dominant techniques used for reserve estimation 

as observed in Tables 2 and 3. One technique's 

superiority over the other for ore grade estimation 

has not been fully established, as revealed by various 

researchers (Samanta et al., 2004a; Samanta et al., 

2005a; Dutta et al., 2006; Kapageridis et al., 2000). 

Nevertheless, the mode of operation of these two 

techniques works under different frameworks. 

Geostatistical methods are linear models based on a 

local neighbourhood structure and work under the 

assumption of stationarity work. AI techniques on 

the other hand, are nonlinear estimators, robust for 

noisy and extreme data values which should 

therefore perform better in vein deposits due to the 

presence of multiple outliers. Therefore, AI 

techniques naturally perform better when there is a 

nonlinear spatial trend in the data values, which 

violates stationarity's assumption in the kriging 

technique.  
 

It is quite problematic using geostatistics to estimate 

the resources of structurally controlled deposits 

since the variograms obtained are complicated and 

sometimes rendered useless. This causes the 

resource estimator to rely on experience and 

assumptions to get the variogram parameters used 

for the grade estimation itself. The effects of 

assumptions, the complex nature of deposits and the 

attempt to improve OK to satisfy conditions of non-

stationarity, has resulted in more complicated 

kriging techniques that are time-consuming 

(Tahmasebi and Hezarkhani, 2012; Li et al., 2010). 

Hence, applying geostatistical methods for resource 
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estimation becomes problematic when stationarity 

conditions are not satisfied (Nezamolhosseini et al., 

2017). AI techniques handle both stationary and 

non-stationary data points. They perform 

exceptionally better in non-stationary conditions, 

making it a viable alternative in resource estimation 

while reducing processing time. AI also has the 

ability to learn patterns to give optimum results.  

 

4.2 Recommendation  

 
Due to the complex nature of structurally controlled 

vein deposits, it is vital that AI techniques be applied 

in estimating the resources in such deposits. AI 

techniques such as ANN are designed to handle non-

stationary values and handle sample data with a high 

nugget effect. These techniques make little to no 

assumptions, can learn patterns and are less time-

consuming. They also give comparable results with 

kriging with far less data and mostly outperform 

kriging in resource estimation. 
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