
20 

 
                                    GMJ  Vol. 20, No.1, June, 2020 

Performance Evaluation of Training Algorithms in 

Backpropagation Neural Network Approach to Blast-Induced 

Ground Vibration Prediction* 
 

1
C.K. Arthur, 

1
V.A. Temeng and 

1
Y.Y. Ziggah

 

1
University of Mine and Technology, P. O. Box 237, Tarkwa 

 
Arthur, C. K., Temeng, V. A. and Ziggah, Y. Y. (2020) “Performance Evaluation of Training Algorithms in 

Backpropagation Neural Network Approach to Blast-Induced Ground Vibration Prediction”, Ghana Mining 

Journal, Vol. 20, No. 1, pp. 20 - 33. 
 

 

Abstract 

Backpropagation Neural Network (BPNN) is an artificial intelligence technique that has seen several applications in many 

fields of science and engineering. It is well-known that, the critical task in developing an effective and accurate BPNN 

model depends on an appropriate training algorithm, transfer function, number of hidden layers and number of hidden 

neurons. Despite the numerous contributing factors for the development of a BPNN model, training algorithm is key in 

achieving optimum BPNN model performance. This study is focused on evaluating and comparing the performance of 13 

training algorithms in BPNN for the prediction of blast-induced ground vibration. The training algorithms considered 

include: Levenberg-Marquardt, Bayesian Regularisation, Broyden–Fletcher–Goldfarb–Shanno (BFGS) Quasi-Newton, 

Resilient Backpropagation, Scaled Conjugate Gradient, Conjugate Gradient with Powell/Beale Restarts, Fletcher-Powell 

Conjugate Gradient, Polak-Ribiére Conjugate Gradient, One Step Secant, Gradient Descent with Adaptive Learning Rate, 

Gradient Descent with Momentum, Gradient Descent, and Gradient Descent with Momentum and Adaptive Learning Rate. 

Using ranking values for the performance indicators of Mean Squared Error (MSE), correlation coefficient (R), number of 

training epoch (iteration) and the duration for convergence, the performance of the various training algorithms used to build 

the BPNN models were evaluated. The obtained overall ranking results showed that the BFGS Quasi-Newton algorithm 

outperformed the other training algorithms even though the Levenberg Marquardt algorithm was found to have the best 

computational speed and utilised the smallest number of epochs. 
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1 Introduction 

 

Artificial Neural Network (ANN) developed by 

Warren McCulloch and Walter Pitts in 1943 is one 

of the widely used supervised learning approaches 

which was inspired by the structural complexity of 

the human brain (Yegnanarayana, 2009). In the 

1960’s the concept of the backpropagation 

algorithm for neural network training was 

introduced which was thereafter made popular by 

Rumelhart et al. (1989) and hence the name 

Backpropagation Neural Network (BPNN). The 

BPNN can thus be described as feed forward neural 

network which comprises of the input layer, the 

hidden layer and the output layer. The role of the 

input layer is to receive information from the real 

world. These received input data are assigned 

weights which define the strength of the connection 

between input and hidden layer neurons with an 

added bias term. The weighted inputs are then sent 

to neurons in the hidden layer which are then 

transformed by a nonlinear activation function. The 

resulting output from the hidden layer is then sent 

to the output layer where a linear activation 

function is employed to produce the final output. It 

is worth mentioning that, in the training process, 

after each forward pass through a network, 

backward pass is performed by backpropagation 

with the aim of minimising the error between the 

estimated network value and the expected 

measured values by adjusting the model’s 

parameters (weights and biases). These forward 

and backward passes are repeated until the network 

error converge at a minimum predetermined 

threshold value. 

 

Studies have shown that the critical task in 

developing an effective and accurate BPNN model 

depends on selecting an appropriate training 

algorithm and fine-tuning certain factors such as 

the transfer function, number of hidden layers and 

number of hidden neurons (Zhu et al., 2005; Huang 

et al., 2006; Huang et al., 2011). Despite the 

numerous contributing factors for the development 

of a BPNN model, the training algorithm plays a 

key role in the BPNN final outputs. This is 

because, it has been proven that a BPNN with one 

hidden layer is enough to correctly fit any 

continuous data (Hornik et al., 1989; Park and 

Sandberg, 1991). Additionally, the number of 

hidden neurons to be used is mostly determined by 

the sequential trial and error procedure in the 

model training (Braspenning et al., 1995; Sheela 

and Deepa, 2013, Anifowose et al., 2017). The 

common practice in the case of the activation 

function is that the logistic or hyperbolic is usually 

used in the hidden layer while a linear function is 

used in the output layer (Garson, 1998; Beale et al., 

2017). Therefore, this study is focused on 
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evaluating and comparing the performance of 

thirteen (13) training algorithms in BPNN for the 

prediction of blast-induced ground vibration. The 

BPNN training algorithms found in literature and 

applied in this study include the Levenberg-

Marquardt (trainLM), Bayesian Regularisation 

(trainBR), Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) Quasi-Newton (trainBFGS), Resilient 

Backpropagation (trainRP), Scaled Conjugate 

Gradient (trainSCG), Conjugate Gradient with 

Powell/Beale Restart (trainCGB), Fletcher-Reeves 

Conjugate Gradient (trainCGF), Polak-Ribiére 

Conjugate Gradient (trainCGP), One Step Secant 

(trainOSS), Gradient Descent algorithm with 

Adaptive Learning Rate (trainGDA), Gradient 

Descent with Momentum (trainGDM), Gradient 

Descent (trainGD) and Gradient Descent with 

Momentum and Adaptive Learning Rate 

(trainGDX) (Beale et al., 2019).  

 

The motive of this study is that, only few of these 

training algorithms have been applied by 

researchers in the development of a BPNN model. 

For instance, researchers such as Kişi and 

Uncuoğlu (2005) investigated the use of the 

trainLM, trainCGF and the trainRP for streamflow 

forecasting and the lateral stress in cohesionless 

soil determination. These three training algorithms 

were compared based on their convergence 

velocities in training and performance in testing. 

The results showed that, although the trainLM 

algorithm was found to be faster and having better 

performance than the other algorithms in training, 

the trainRP Algorithm had the best accuracy in the 

testing period. Ceke et al. (2009) also investigated 

the predictive performance of six training 

algorithms in predicting mean glandular dose based 

on measurable parameters in mammography. The 

algorithms compared included the trainSCG, 

trainCGB, trainBFGS, trainOSS, trainLM and 

trainRP. Their prediction results showed that the 

neural network model trained with trainLM 

algorithm had best results compared to those 

trained with the other training algorithms. Sandhu 

and Chhabra (2011) also investigated the predictive 

performance of trainSCG, trainCGB algorithm, 

trainCGF algorithm, trainCGP algorithm in 

reusability evaluation of procedure-based software 

systems. The results obtained showed that the 

trainSCG algorithm was the best. In Kaur and 

Salaria (2013) trainBR, trainLM, trainGDX were 

compared in developing a neural network for 

software effort estimation. The trainBR was noted 

to have performed more creditably than the other 

algorithms for software effort estimation. Sharma 

and Venugopalan (2014) in brain hematoma 

classification compared the performance of 

trainGD, trainGDM, trainRP, trainSCG, trainCGF, 

trainCGP, trainBFGS and trainLM algorithms. It 

was found that trainLM and trainSCG 

outperformed the other algorithms. In Baghirli 

(2015) the predictive abilities of the trainLM, 

trainBR and the trainSCG algorithms were 

investigated pertaining to the accuracy of the 

multistep ahead monthly wind speed forecasting. 

Kayri (2016) also investigated the predictive 

capabilities of the trainLM and trainBR algorithms 

on neural networks using social data. The trainBR 

algorithm showed better performance than the 

trainLM algorithm.  

 

It can therefore be realised from the afore-

discussed instances that there is the need to explore 

and evaluate the performance of the training 

algorithms outlined by Beale et al. (2019). In this 

study, the performance of BPNN trained with the 

13 algorithms are evaluated to predict  blast-

induced ground vibration. The motive is that 

literature has shown that the BPNN trained with 

trainLM is the most widely and successfully used 

method for blast-induced ground vibration 

(Khandelwal and Singh, 2007; Khandelwal and 

Singh, 2009; Saadat et al., 2014; Taheri et al., 

2017; Arthur et al., 2020a). Therefore, the main 

contribution of this study was to bring to light how 

training algorithms affect the predictive 

performance of BPNN in blast-induced ground 

vibration prediction. This will further enhance and 

bring up new dimension when applying the BPNN 

for blast induced ground vibration prediction. 

 

2 Resources and Methods Used  

 
2.1 Resources 
 

The study was carried out in a Manganese Mine in 

Ghana with an area extension of latitude 5˚16ʹ 

North and longitude 1˚59ʹ West as shown in Fig. 1.  

 

 
 

Fig. 1 Study Area 

 

The Mine adopts the use of drill and blast 

techniques to fragment the in-situ rock mass into 

appropriate rock sizes. In this regard, drill rigs and 

emulsion are used in the drilling and blasting 

processes respectively. The fragmented rocks are 

either hauled to the crusher or waste dump using 
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CAT 777F, Komatsu HD 465, and Volvo AD35 

rear dump trucks. 

 

For the purpose of this study, a total of 210 historic 

instances of blast data were collected from the 

Mine. The blast data comprised of the following 

parameters: number of blast holes, maximum 

instantaneous charge (kg), distance between 

blasting point and monitoring station (m), hole 

depth (m), powder factor (kg/m
3
) and Peak Particle 

Velocity (PPV) (mm/s). These recorded parameters 

are deemed significant in affecting the levels of 

blast-induced vibrations in literature It is 

noteworthy that PPV is the most preferred 

parameter for evaluating blast-induced ground 

vibration (Iramina et al., 2018; Arthur et al., 

2020b). However, for the development of the 

various models as presented in this study, number 

of blast holes, maximum instantaneous charge (kg), 

distance between blasting point and monitoring 

station (m), hole depth (m), powder factor (kg/m
3
) 

were used as the input parameters while the PPV 

(mm/s) values served as the output parameter. 

Table 1 shows the statistical description of the 

input and output parameters used in this study. In 

order to construct the various models in this study, 

the collected datasets were divided into two sets: 

training and testing sets. A total of 130 data points 

representing 62% of the collected datasets were 

used as the training sets while the remaining 80 

data points representing 38% were used as the 

testing datasets to independently assess the 

performance of the trained models. 

 

2.2 Backpropagation Training Algorithms 

Used 

 

In this section, concise descriptions of the training 

algorithms is presented. The architectural 

description of the BPNN is presented here as they 

are extensively applied and explained in several 

blast-induced ground vibration studies 

(Khandelwal and Singh, 2007; Khandelwal and 

Singh, 2009; Saadat et al., 2014; Taheri et al., 

2017; Arthur et al., 2020a). 

 

2.2.1 Levenberg-Marquardt 

 

The trainLM algorithm is an iterative technique for 

finding the minimum of a multivariate error 

function E (Equation (1)) that is expressed as the 

sum of squares of the difference between the actual 

output iy  and target output it  (Adeoti and 

Osanaiye, 2013). 

 

 
1

2
i iE y t     (1) 

 

The trainLM was designed to approach second 

order speed without having to compute the Hessian 

matrix. Nevertheless, the Hessian matrix (H) as 

well as the gradient (g) can be approximated using 

Equations (2) and (3) respectively, when the 

performance function has a form of sum of squares. 

 
TH J J    (2) 
Tg J e    (3) 

 

where J is the Jacobian matrix containing the first 

derivatives of the network errors with respect to the 

biases and weights, and e  is the network error 

vector. The Jacobian matrix can be computed 

through a standard backpropagation technique that 

is much less complex than computing the Hessian 

matrix (Baghirli, 2015). The trainLM algorithm 

uses this approximation to the Hessian matrix in 

the following Newton-like update (Equation (4)). 

 
1

1

T T

i iw w J J μI J e



       (4) 

 

where w represents connection weights, µ is the 

damping term and I is the identity matrix. The 

trainLM uses the combination of Gauss-Newton 

method and gradient descent in its iterative process. 

When the µ is zero, it becomes a Gauss-Newton 

method, using the approximate Hessian matrix. 

When the µ is large, it becomes a gradient descent 

method having a small step size. Newton’s method 

is faster and more accurate near an error minimum, 

so the aim is to shift towards Newton’s method as 

quickly as possible. Thus, µ is decreased after each 

successful step (reduction in performance function) 

and is increased only when a tentative step would 

increase the performance function. In this way, the 

performance function will always be reduced at 

each iteration of the algorithm (Baghirli, 2015).
 

Table 1 Statistical Description of Parameters  

Parameters Type Unit Min Max Average Std Dev 

Number of blast holes 

Inputs 

- 19 355 122.50 52.37 

Maximum instantaneous charge kg 11.60 123.49 90.08 19.54 

Distance from blasting point to 

monitoring station 
m 573 1500 915.01 234.62 

Hole depth m 3.73 12.58 10.45 1.14 

Powder factor kg/m
3
 0.10 0.97 0.69 0.15 

Peak Particle Velocity Output mm/s 0.13 1.65 0.79 0.32 
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2.2.2 Bayesian Regularisation 

 

The trainBR is a training algorithm that updates the 

weights and bias values according to Levenberg-

Marquardt optimisation (Kaur and Salaria, 2013). It 

minimizes a combination of squared errors and 

weights, and then determines the correct 

combination to produce a network that generalizes 

well (Kaur and Salaria, 2013). According to 

Foresee and Hagan (1997), the method of 

improving generalisation is referred to as 

regularisation. 

 

The aim of training is to reduce the sum of squared 

error, ED. This implies that, the training objective 

function is F = ED. However, regularisation adds 

an additional term, EW. The objective function is 

then expressed as shown in Equation (5) (Foresee 

and Hagan, 1997). 
 

D WF βE αE     (5) 
 

where WE is the sum of squared of the network 

weights; ED is the sum of network errors; α and β 

are the objective function parameters. Foresee and 

Hagan (1997) state that, the relative size of the 

objective function parameters dictates the emphasis 

for training. If α β, then the training algorithm 

will drive the errors smaller and if α β, training 

will emphasise weight size reduction at the expense 

of network errors, thus producing a smoother 

network problem. However, the main problem with 

implementing regularisation is setting the correct 

values for the objective function parameters. The α 

and β factors are defined using the Bayes’ rule. The 

procedure for finding the correct values of α and β 

is explained by Foresee and Hagan (1997). 

 

2.2.3 Broyden-Fletcher-Goldfarb-Shanno Quasi-

Newton 

 

The trainBFGS algorithm is a Quasi-Newton 

second-derivative line search family method for 

solving unconstrained optimization problem 

(Ibrahim et al., 2014). The trainBFGS uses 

quadratic Taylor approximation of the objective 

function in a d-vicinity of x (Biglari and Ebadian, 

2015) as expressed in Equation (6). 

 

       

 
1

                           
2

T

T

f x d q d f x d g x

d H x d

   


  (6) 

where g(x) is the gradient vector and H(x) is the 

Hessian matrix. The necessary condition for a local 

minimum of q(d) with respect to d results in the 

linear system presented in Equation (7). 

 

    0g x H x d     (7) 

which in turn gives the Newton direction d 

(Equation (8)) for line search. 

 

   
1

d H x g x


     (8) 

 

The exact Newton direction (which is subject to 

defining in Newton-type methods) is reliable when 

the Hessian matrix exists and positive definite with 

the difference between the true objective function 

and its quadratic approximation not being large.  

 

In Quasi-Newton methods, the idea is to use 

matrices which approximate the Hessian matrix 

and/or its inverse, instead of exact computing of the 

Hessian matrix (as in Newton-type methods). The 

matrices are normally named B H  and 
1D H 

. The matrices are adjusted on each iteration and 

can be produced in many different ways ranging 

from very simple techniques to highly advanced 

schemes. The trainBFGS method uses an updating 

formula which converges to the approximate of the 

Hessian matrix H(x*) as expressed in Equation (9). 

 

1

T T

i i i i i i

i i T T

i i i i i

B s s B y y
B B

s B s y s
      (9) 

where 

1i i is x x   

1i i iy g g   

As a starting point, 0B  can be set to any symmetric 

positive definite matrix, for example and very 

often, the identity matrix. The trainBFGS method 

exposes super linear convergence; resource-

intensity is estimated as O(n
2
) per iteration for n-

component argument vector. 

 

2.2.4 Resilient Backpropagation 

 

The trainRP algorithm is a training algorithm for 

neural networks that work similarly to the standard 

backpropagation algorithm. The difference 

however is in the way the connecting weights are 

updated (Prasad et al., 2013). For the 

backpropagation, the update is computed using the 

magnitude of the partial derivative as expressed in 

Equation (10). 

 

     Δ jk j kw m α x m δ m     (10) 

 

where α is the learning rate,  jx m  denotes the 

inputs propagating back to the ith neuron at time 

step m and kδ  is the corresponding error gradient. 

For the trainRP, an individual delta Δ jk  which 

determines the size of the weight jkw update for 

each connection is computed. The learning rule 

expressed in Equation (11) is used in calculating 

Δ jk . 
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 

 

   

 

   

 

Δ 1  

if 1 0

Δ Δ 1  

if 1 0

Δ 1  else

jk

jk jk

jk jk

jk jk

jk

m η ,

E E
m m

w w

m m η ,

E E
m m

w w

m ,





  


    
  



  


    
  




 (11) 

 

where 0 1η η    . It is noteworthy that, for the 

trainRP, the weight update is not influenced by the 

magnitude of the derivatives, but by the behaviour 

of the sign of the two succeeding derivatives. 

 

Every time the partial derivative of the 

corresponding weight 
jkw  changes its sign 

indicating the last update was too big and that the 

algorithm has jumped over a local minimum. The 

update-value Δ jk
 is then decreased by the factor 

η . If the derivative retains its sign, the updated 

value is slightly increased in order to accelerate 

convergence in shallow regions (Riedmiller and 

Braun, 1992; Prasad et al., 2013).  

 

The update rule for weights is the same as that 

expressed in Equation (12), except that if the partial 

derivative changes sign, the previous update-step 

leading to a jump over the minimum is reverted to 

Equation (13). When a change of sign has 

occurred, the adaptation process is restarted. The 

update-values and weights are changed every time 

the whole pattern set has been presented to the 

network. 
 

 

 

 

0

0

Δ  if 0

Δ +Δ  if 0

    0  else

jk

jk

jk

E
, m

w

E
w m , m

w

,


  

 

 






  (12) 

   

   

Δ Δ 1  

                if 1 0

jk jk

jk jk

m m ,

E E
m m

w w

  

 
  

 

 (13) 

 

2.2.5 Fletcher-Reeves Conjugate Gradient 

 

The trainCGF algorithm is a variation of the 

Conjugate Gradient method developed by Fletcher 

and Reeves (1964). The algorithm can train any 

network if its weight, net input, and transfer 

functions have derivative functions. 

Backpropagation is used to calculate derivatives of 

performance with respect to the weight and bias 

vectors M. Each vector Mi is adjusted according to 

Equation (14). 
 

 M M a dM    (14) 
 

where dM is the search direction with a being the 

parameter selected to minimise the performance 

along the search direction. The line search function 

is used to locate the minimum point. The first 

search direction is the negative of the gradient of 

performance. In succeeding iterations, the search 

direction is computed from the new gradient and 

the previous search direction according to Equation 

(15). 
 

 olddM gM β dM     (15) 

where gM is the gradient. The parameter β can be 

computed in several different ways. For the 

Fletcher-Reeves variation of conjugate gradient it 

is computed using Equation (16).  

 

1 1

T

k k

k T

k k

g g
β

g g 

    (16) 

where 
1 1

T

k kg g 
 is the norm square of the previous 

gradient and T

k kg g  is the norm square of the 

current gradient. 

 

2.2.6 Polak-Ribiére Conjugate Gradient 

 

The trainCGP algorithm is another version of the 

conjugate gradient method proposed by Polak and 

Ribiére (1969). As with the trainCGF algorithm, 

the search direction (p) at each iteration is 

determined by Equation (17). 
 

1k k k kp g β p      (17) 
 

For the Polak-Ribiére update, the constant βk is 

computed using Equation (18). 
 

1

1 1

Δ T

k k

k T

k k

g g
β

g g



 

    (18) 

 

Equation (18) is the inner product of the previous 

change in the gradient with the current gradient 

divided by the norm squared of the previous 

gradient. 

 

2.2.7 Conjugate Gradient with Powell/Beale 

Restarts 
 

According to Sandhu and Chhabra (2011), the 

search direction for all conjugate gradient 

algorithms is occasionally reset to the negative of 

the gradient. When the number of network’s 

weights and biases equal the number of iterations, 

the standard reset point has occurred. However, 

there are other reset approaches that can improve 

the training efficiency. One of these is the 

Powell/Beale Restart approach (Powell, 1977; 

Beale, 1972). This technique restarts if there is very 

little orthogonality left between the current gradient 

and the previous gradient (Sandhu and Chhabra, 
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2011). Equation (19) is used as a test to determine 

when to reset the search direction to the negative of 

the gradient. 
 

2

1 0 2T

k k kg g . g    (19) 

 

where kg  is the gradient of the kth iteration. If this 

condition is satisfied, the search direction is reset to 

the negative of the gradient. This algorithm can 

train any network if its weight, net input, and 

transfer functions have derivative functions. 

 

Backpropagation is used to calculate derivatives of 

performance with respect to the weight and bias 

vectors M. Each vector Mi is adjusted using 

Equation (14). The line search function is used to 

locate the minimum point. 

 

2.2.8 Scaled Conjugate Gradient  

 

The trainSCG algorithm belongs to a class of 

Conjugate Gradient methods developed by Møller 

(1993). The trainSCG avoids the use of line search 

in its computation unlike the other conjugate 

gradient algorithms that require a line search for 

each iteration. The trainSCG combines the model-

trust approach and the conjugate gradient approach 

(Sandhu and Chhabra, 2011). During computation, 

the trainSCG algorithm denotes the quadratic 

approximation to the error E in a neighbourhood of 

a point w by  
qw

E y (Equation (20)). 
 

       
1

2

T T

qw
E y E w E w y y E w y     (20) 

Hence, to determine the minimum of  
qw

E y , the 

critical points for  
qw

E y  must be found. The 

critical points are the solution to the linear system 

defined by Møller (1993). The Scaled Conjugate 

Gradient algorithm can train any network as long 

as its weight, net input, and transfer functions have 

derivative functions (Sandhu and Chhabra, 2011).  

 

2.2.9 One Step Secant Backpropagation  

 

The trainOSS method is an attempt to bridge the 

gap between the conjugate gradient algorithms and 

the quasi-Newton (secant) algorithms (Mukkamala 

et al., 2003). This algorithm does not store the 

complete Hessian matrix. It however assumes that 

at each iteration, the previous Hessian was the 

identity matrix. This has the additional advantage 

that the new search direction can be calculated 

without computing the matrix inverse (Mukkamala 

et al., 2003). The algorithm can train any network 

if its weight, net input, and transfer functions have 

derivative functions. Backpropagation is used to 

calculate derivatives of performance with respect to 

the weight and bias vectors M. Each vector Mi is 

adjusted according to Equation (14) as in conjugate 

gradient algorithms. The line search function is 

used to locate the minimum point. The first search 

direction is the negative of the gradient of 

performance. In subsequent iterations, the search 

direction is computed from the new gradient and 

the change in the weights and gradients from the 

previous iteration according to Equation (21). 
 

   stepdM gM Ac M Bc dgM     (21) 
 

here gM is the gradient, Mstep is the change in the 

weights of the previous iteration, dgM is the change 

in the gradient from the last iteration whereas Ac 

and Bc are the combinational scalar products of 

gM, Mstep and dgM 

 

2.2.10 Gradient Descent 

 

For the trainGD algorithm, the weights and biases 

are updated in the direction of the negative gradient 

of the performance function (Moini and Lakizadeh, 

2011). Backpropagation is used to calculate 

derivatives of performance function, Q with respect 

to the weight and bias vectors M. Each vector Mi is 

adjusted according to the gradient descent as 

expressed in Equation (22). 
 

dQ
dM α

dx
     (22) 

where α is the learning rate. The learning rate is 

multiplied by the negative of the gradient to 

determine the changes to the weights and biases. 

The larger the learning rate, the bigger the step 

leading to unstable algorithm. However, the 

smaller the learning rate the longer time it takes the 

algorithm to converge. 

 

2.2.11 Gradient Descent with Adaptive Learning 

Rate 

 

With standard trainGD algorithm, the learning rate 

is held constant throughout training. The 

performance of the algorithm is very sensitive to 

the proper setting of the learning rate (Peteiro-

Barral and Guijarro-Berdiñas, 2013). If the learning 

rate is set too high, the algorithm can oscillate and 

become unstable. If the learning rate is too small, 

the algorithm takes too long to converge. It is not 

practical to determine the optimal setting for the 

learning rate before training and in fact, the optimal 

learning rate changes during the training process, 

as the algorithm moves across the performance 

surface. The performance of the trainGD algorithm 

can be improved if the learning rate can change 

during the training process. Thus, the trainGDA 

algorithm. An adaptive learning rate attempts to 

keep the learning step size as large as possible 

while keeping learning stable. The learning rate is 

made responsive to the complexity of the local 
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error surface (Peteiro-Barral and Guijarro-

Berdiñas, 2013).  
 

An adaptive learning rate requires some changes in 

the training procedure used by trainGD algorithm. 

First, the initial network output and error are 

calculated. At each iteration new weights and 

biases are calculated using the current learning rate. 

New outputs and errors are then calculated. 
 

2.2.12 Gradient Descent with Momentum 

 

The trainGDM allows a network to respond not 

only to the local gradient, but also to recent trends 

in the error surface acting like a lowpass filter 

(Garcez et al., 2008). Momentum allows the 

network to ignore small features in the error 

surface. Without momentum, a network can get 

stuck in a shallow local minimum. With 

momentum a network can slide through such 

entrapment. 
 

The trainGDM algorithm depends on two training 

parameters: namely the learning rate, α and the 

momentum constant γ . The momentum constant 

defines the amount of momentum which is set 

between 0 (no momentum) and values close to 1 

(lots of momentum). A momentum constant of 1 

(one) results in a network that is completely 

insensitive to the local gradient and therefore, does 

not learn properly. Backpropagation is used to 

calculate derivatives of performance function Q 

with respect to the weight and bias vectors M. Each 

vector Mi is adjusted according to gradient descent 

with momentum as expressed in Equation (23). 
 

   1previous

dQ
dM γ dM α γ

dM
       (23) 

where 
previousdM  is the previous change to the 

weight or bias. 

 

2.2.13 Gradient Descent with Momentum and 

Adaptive Learning Rate 
 

The trainGDX algorithm combines adaptive 

learning rate with momentum training. It is similar 

to the trainGDA except that it has the momentum 

coefficient γ as an additional training parameter 

(Galaviz et al., 2010). The algorithm can train any 

network as long as its weight, net input, and 

transfer functions have derivative functions. 

Backpropagation is used to calculate derivatives of 

performance Q with respect to the weight and bias 

vectors M. Each vector Mi is adjusted according to 

gradient descent with momentum as expressed in 

Equation (24). 
 

 previous

dQ
dM γ dM α γ

dM
       (24) 

 

where 
previousdM  is the previous change to the 

weight or bias and α is the learning rate. For each 

iteration when the performance decreases toward 

the set goal, then the learning rate is increased by 

the factor (typically 1.05). If performance increases 

by more than the factor (typically 1.04), the 

learning rate is adjusted by the factor (typically 0.7) 

and the change that increased the performance is 

not made. 
 

2.3 Model Development and Performance 

Assessment 
 

2.3.1 Data Normalisation 

 

The collected data had varying input ranges and 

hence the possibility of the larger range values to 

affect the outcome of the prediction. Hence to 

avoid this, the various input parameters were 

normalised into the range [-1, 1] using Equation 

(25). 
 

   max min i min

i min

max min

P P Q Q
P P

Q Q

  
 


 (25) 

 

where iP  denotes the normalised data, iQ  denotes 

the collected blast data and maxQ  and minQ  

represent maximum and minimum values of the 

collected data with minP  and maxP  values equalling 

to –1 and 1, respectively. 

 

2.3.2 Model Development 

 

In order to ascertain the predictive performance of 

the BPNN based on the various training algorithms, 

the other critical parameters that required fine-

tuning were predetermined to serve as the 

background for this study. Hence, one hidden layer 

with a hyperbolic tangent transfer function as well 

as one output layer with a linear transfer function 

were used for this study as iterated by Hornik et al. 

(1989), Braspenning et al. (1995) and Beale et al. 

(2017). Throughout the experimental process, 1 

neuron out of 1 to 20 neurons investigated, in the 

hidden layer was established to be the optimum 

number of neuron required for the effective 

development of the BPNN models used in this 

study. It is worth mentioning that the sequential 

trial and error procedure for the establishment of 

the optimal structure of the BPNN models was not 

presented in this study. Therefore, a model 

structure of [5 – 1 – 1] meaning, 5 inputs, one 

hidden layer with 1 neuron and 1 output layer was 

used in this study to ascertain the performance of 

the various training algorithms. Moreover, in this 

study, the BPNN was trained for 8000 epochs with 

a learning rate of 0.03 and a momentum coefficient 

of 0.7. The MATLAB R2019a program was used 

to run the BPNN based on the 13 algorithms (Table 
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2) discussed in Section 2.2. It is noteworthy that a 

computer with an Intel(R) Core (TM) i7-8550U 

CPU @ 1.80GHz, 1.99 GHz processor was used to 

run the MATLAB program for the various training 

functions. In Table 2, the syntax for the various 

training functions defined in the MATLAB 

environment are presented. 

 

2.3.3 Model Performance Assessment 

 

Performance indices of Mean Squared Error (MSE) 

(Equation (26)), correlation coefficient (R) 

(Equation (27)), number of epochs (iterations) and 

duration for convergence were used to assess the 

performance of developed BPNN models with their 

respective training algorithms. The values for each 

set of performance indices for the respective 

training algorithms were ranked according to the 

order of performance, with good performing values 

having higher ranking values. Afterwards, the total 

ranking values were computed to ascertain the best 

performing training algorithm. 
 

 
2

1

1 n

i i

i

MSE m p
n 

     (26) 
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
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 (27) 

 

where n, im , ip , m and p  are the total number 

of samples, the measured field values, the predicted 

field values, the mean of the measured field values 

and the mean of the predicted values respectively. 

 

3 Results and Discussion  
 

The obtained ranking results based on the number 

of training epochs (iterations) and duration of 

convergence (time) are outlined in Table 3.  

From Table 3, it can be gathered that, the trainLM 

algorithm used the minimum number of training 

epoch of 12 to converge at the optimal solution and 

thus had the highest-ranking value. It also had the 

fastest convergence speed of 2 seconds. This is 

because the trainLM algorithm works by 

combining the steepest descent and the Gauss-

Newton methods to give optimal solution. Thus, 

the algorithm performs like steepest descent when 

the current solution is close to local minimum but 

exhibit fast convergence in the Gauss-Newton 

condition when the algorithm approaches the 

correct solution (Lourakis and Argyros, 2005). The 

trainBR algorithm followed up with training epoch 

and fast convergence speed of 34 and 5 seconds 

respectively (Table 3). 

 

The trainCGF algorithm had a faster convergence 

speed (7 seconds) than the trainBFGS algorithm (9 

seconds), even though the trainBFGS algorithm 

used a smaller number of iterations to converge. 

The trainOSS (Table 3) was also faster than the 

trainSCG algorithm but required more iterations to 

converge. The trainCGB and the trainCGP 

algorithms had close convergence speed (13 and 12 

seconds) and number of iterations (82 and 81) 

respectively to arrive at the optimal solution. The 

trainRP had a relatively fast convergence speed of 

38 seconds. However, it required a large number of 

epochs (3817) to converge at the optimal solution. 

In Table 3, it can also be observed that, the trainGD 

algorithm and its variations were the slowest with a 

convergence speed above 1320 seconds (22 

minutes) and training epochs of more than 7000 to 

converge to their optimal solutions. To illustrate 

graphically the performance of the various training 

algorithms, the ranking results of the training 

epochs and duration of convergence were plotted 

against each other (see Fig. 2). 

 

 
 

Table 2 Backpropagation Training Functions and their Respective Algorithms 
 

Training Function Syntax 

in MATLAB 
Algorithm Type Abbreviation 

trainlm Levenberg-Marquardt  trainLM 

trainbr Bayesian Regularisation trainBR 

trainscg Scaled Conjugate Gradient trainSCG 

trainbfg Broyden–Fletcher–Goldfarb–Shanno Quasi-Newton trainBFGS 

traincgb Conjugate Gradient with Powell/Beale Restarts  trainCGB 

traincgp Polak-Ribiére Conjugate Gradient trainCGP 

traincgf Fletcher-Reeves Conjugate Gradient trainCGF 

traingd Gradient Descent trainGD 

traingdm Gradient Descent with Momentum trainGDM 

traingda Gradient Descent with Adaptive Learning Rate trainGDA 

traingdx 
Gradient Descent with Momentum and Adaptive Learning 

Rate 
trainGDX 

trainoss One Step Secant trainOSS 

trainrp Resilient Backpropagation trainRP 
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The analysis from Fig. 2 is that any training 

algorithm that appears on the top most right corner 

is better than those that appear on the below and 

found at the bottom left corner. In Fig. 2, it can be 

seen that the trainLM appeared at the top right 

corner emerging as the best in training epoch and 

fast convergence. The trainGD algorithm and its 

variations performed badly as they were located at 

the left bottom corner. The slowness of the trainGD 

algorithms to converge has been reiterated by 

Luhaniwal (2019). It was evident that the gradient 

descent methods move down a local gradient such 

that this gradient does not point towards the 

minimum, given the curvature of the underlining 

function differs significantly with direction 

(Nabney, 2002). Furthermore, even if a smaller 

learning rate is chosen, there is a high possibility 

for successive iterations to oscillate across ‘valleys’ 

in the function (Nabney, 2002). 

 

 
Fig. 2 Training Epoch Ranking against Time 

Ranking 
 

In furtherance to the performance analysis, R and 

MSE training results with their respective rankings 

are presented in Table 4. With reference to Table 4, 

it can be observed that the prediction results based 

on the training datasets were marginally the same. 

However, to ascertain the optimal training 

algorithm, the obtained R and MSE values for each 

training algorithm were ranked. The ranking results 

(Table 4) showed that, the trainBFGS algorithm 

gave the highest R value and lowest MSE value. 

This was closely followed in the order of 

decreasing performance by trainLM, trainSCG, 

trainRP, trainOSS, trainCGB, trainCGF, trainGDX, 

trainCGP, trainBR, trainGDA, trainGD and 

trainGDM. This can additionally be viewed from 

Fig. 3 where trainBFGS algorithm appeared on the 

top right corner indicating its superiority over the 

other training algorithms. Similarly, the ranking 

testing results based on R and MSE values for each 

training algorithm are presented in Table 5. 

 

 
Fig. 3 Training R Ranking against MSE 

Ranking Results 

Table 3 Training Epoch and Time Ranking Results 
 

Training Algorithm Training Epoch Ranking Time (sec) Ranking 

trainLM 12 13 2 13 

trainBR 34 12 5 12 

trainBFGS 61 11 9 10 

trainCGF 105 8 7 11 

trainCGP 81 10 12 9 

trainCGB 82 9 13 8 

trainOSS 294 6 14 7 

trainSCG 188 7 31 6 

trainRP 3817 5 38 5 

trainGD 8000 2 1330 4 

trainGDM 8000 2 1361 3 

trainGDA 7183 4 2001 1 

trainGDX 8000 2 1510 2 
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Table 4 Training Ranking Results 
 

Training Algorithm 

Training Results 

R Ranking MSE Ranking 

trainBFGS 0.9090005754583 13 0.0209017892774 13 

trainLM 0.9090005754579 12 0.0209017892775 12 

trainSCG 0.9090005754561 11 0.0209017892778 11 

trainRP 0.9090005754453 10 0.0209017892802 10 

trainOSS 0.9090005754161 9 0.0209017892866 9 

trainCGB 0.9090005751572 8 0.0209017893469 8 

trainCGF 0.9090003062234 7 0.0209018497356 7 

trainGDX 0.9089999984241 6 0.0209019166768 6 

trainCGP 0.9089991077789 5 0.0209021134156 5 

trainBR 0.9089275530420 4 0.0209230456845 4 

trainGDA 0.9079688866458 3 0.0211538725254 3 

trainGD 0.9077256163441 2 0.0211813116335 2 

TrainGDM 0.9076340091090 1 0.0212013319689 1 

 

Table 5 Testing Ranking Results  
 

Training Algorithm 

Testing Results 

R Ranking MSE Ranking 

trainOSS 0.8537001504187 13 0.0216959930735 13 

trainBFGS 0.8536998643984 12 0.0216960613531 12 

trainSCG 0.8536998515411 11 0.0216960677706 11 

trainLM 0.8536998272836 10 0.0216960710372 10 

trainRP 0.8536997263504 9 0.0216960941277 9 

trainCGB 0.8536982722252 8 0.0216964067015 8 

trainCGF 0.8536625479130 7 0.0217023197188 7 

trainGDX 0.8536620969792 6 0.0217034459559 6 

trainCGP 0.8536313149995 5 0.0217110148640 5 

trainBR 0.8528831275419 4 0.0218197614089 4 

trainGD 0.8496588256014 2 0.0224272490166 3 

trainDGA 0.8510589037442 3 0.0225051033507 1 

trainGDM 0.8494726322899 1 0.0224601694095 2 
 

 

It can be noticed from Table 5 that, a very closely 

related results (R and MSE) was produced by the 

training algorithms and that their differences are 

very insignificant. In comparison, the trainOSS 

algorithm produced the highest R value and lowest 

MSE which was followed by trainBFGS algorithm. 

The trainSCG, trainLM, trainRP, trainCGB, 

trainCGF, trainGDX, trainCGP, trainBR, trainGD, 

trainDGA and trainGDM algorithms followed in 

that order of decreasing performance as 

additionally illustrated in Fig. 4. Finally, the 

obtained ranking results (training and testing) 

based on the various performance indicators were 
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summed to obtain the overall ranking results for the 

various training algorithms as shown in Table 6. 

 

 
 

Fig. 4 Testing R Ranking against MSE Ranking 

Results 

 

Table 6 Overall Ranking Based on Training and 

Testing Results for Epoch, Time, R and 

MSE 
 

Training 

Algorithm 

Sum of All 

Ranking 

Values 

Overall 

Rank 

Position 

trainBFGS 71 1 

trainLM 70 2 

trainSCG 57 3 

trainOSS 57 3 

trainCGB 49 5 

trainRP 48 6 

trainCGF 47 7 

trainBR 40 8 

trainCGP 39 9 

trainGDX 28 10 

trainGD 15 11 

trainGDA 15 11 

trainGDM 10 13 

 

With reference to Table 6, it can be observed that 

the trainBFGS algorithm had the highest total 

ranking value of 71 making it the best training 

algorithm for this study. This was closely followed 

by the trainLM algorithm which had a total ranking 

of 70. The trainBFGS algorithm and the trainLM 

algorithm have been stated by Beale et al. (2019) to 

have similar performance as was observed in this 

study. Both the trainSCG and trainOSS algorithms 

had the same total ranking value of 57 and thus the 

same rank position. These were followed by the 

trainCGB, trainRP, trainCGF, trainBR, trainCGP 

algorithms in increasing overall rank value, as 

higher overall rank position signifies lower 

performance. It can also be seen that, the trainGD 

and its variational algorithms had very poor total 

ranking values and thus were the worst performing 

training algorithms for this study. These rank 

positions of the various training algorithms are 

graphically illustrated in Fig. 5.  

 

The trainBFGS algorithm came out the best due to 

its robustness and self-correcting properties to 

maintain a satisfaction of the secant condition. In 

addition to that, it has a good initial approximation 

of the inverse Hessian matrix (Ding et al., 2004; 

Eisen et al., 2017). 

 

 
Fig. 5 Order of Rank of Training Algorithms 

 

4 Conclusions  
 

In this study, 13 backpropagation neural network 

training algorithms namely; Levenberg-Marquardt, 

Bayesian Regularisation, BFGS Quasi-Newton, 

Resilient Backpropagation, Scaled Conjugate 

Gradient, Conjugate Gradient with Powell-Beale 

Restarts, Fletcher-Powell Conjugate Gradient, 

Polak-Ribiére Conjugate Gradient, One Step 

Secant, Gradient Descent with adaptive Learning 

Rate, Gradient Descent with Momentum, Gradient 

Descent and Gradient Descent with Momentum 

and Adaptive Learning Rate were investigated to 

ascertain their performance based on the prediction 

of blast-induced ground vibration. In that regard, 
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13 BPNN models were developed using a total of 

210 blasting events data collected from a 

Manganese Mine in Ghana. One hundred and thirty 

(130) datapoints out of the 210 were used as the 

training set while the remaining 80 data points 

were used to independently assess the BPNN 

models developed. The input parameters for the 

models include number of blast holes, maximum 

instantaneous charge (kg), distance between 

blasting point and monitoring station (m), hole 

depth (m) and powder factor (kg/m
3
) with PPV 

(mm/s) serving as the measuring indicator of blast-

induced ground vibration in the output layer. With 

the aim of ascertaining the performance of the 

training algorithms, the optimum structure of [5-1-

1] meaning, five inputs, one hidden layer with one 

neuron and one output layer was observed for all 

the training algorithms. The maximum training 

epoch, learning rate and momentum coefficient 

were set to 8000, 0.03 and 0.7 respectively. 

Furthermore, R, MSE, number of training epochs 

and the duration of convergence to the optimal 

solution were used in ascertaining the performance 

of the various training algorithms. Each resulting 

performance indicator was ranked and then 

summed up to ascertain the overall predictive 

strength of the training algorithms. The obtained 

results showed that the Levenberg-Marquardt 

algorithm had the fastest computational speed as it 

used 2 seconds and 12 epochs to arrive at its 

optimal solution. The gradient descent and its 

variation algorithms were found to be very slow as 

they used more than 1320 seconds (22 minutes) to 

arrive at their optimal solution. They also used a 

maximum training epoch of more than 7000. In the 

case of training prediction results, the BFGS Quasi-

Newton algorithm had the highest R values and 

lowest MSE values and thus the highest-ranking 

value even though the other training algorithms 

achieved marginal results. In the case of the testing 

results, it was found that the One Step Secant 

algorithm was able to perform slightly better than 

all the other training algorithms. However, the 

summed ranking results showed that the BFGS 

Quasi-Newton algorithm was the best training 

algorithm for this study as it had the highest total 

value of 71 and thus an overall rank value of 1. 

This was closely followed by the Levenberg-

Marquardt, Conjugate Gradient, One Step Secant 

algorithms, Conjugate Gradient with Powell/Beale 

Restarts algorithm, Resilient Backpropagation, 

Fletcher-Reeves Conjugate Gradient, Bayesian 

Regularisation, Polak-Ribiére Conjugate Gradient, 

Gradient Descent with Momentum and Adaptive 

Learning Rate, Gradient Descent, Gradient Descent 

with Adaptive Learning Rate and finally the 

Gradient Descent with Momentum in a decreasing 

order of performance. 
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