
20

 GMJ Vol. 20, No.1, June, 2020

Performance Evaluation of Training Algorithms in

Backpropagation Neural Network Approach to Blast-Induced

Ground Vibration Prediction*

1
C.K. Arthur,

1
V.A. Temeng and

1
Y.Y. Ziggah

1
University of Mine and Technology, P. O. Box 237, Tarkwa

Arthur, C. K., Temeng, V. A. and Ziggah, Y. Y. (2020) “Performance Evaluation of Training Algorithms in

Backpropagation Neural Network Approach to Blast-Induced Ground Vibration Prediction”, Ghana Mining

Journal, Vol. 20, No. 1, pp. 20 - 33.

Abstract

Backpropagation Neural Network (BPNN) is an artificial intelligence technique that has seen several applications in many

fields of science and engineering. It is well-known that, the critical task in developing an effective and accurate BPNN

model depends on an appropriate training algorithm, transfer function, number of hidden layers and number of hidden

neurons. Despite the numerous contributing factors for the development of a BPNN model, training algorithm is key in

achieving optimum BPNN model performance. This study is focused on evaluating and comparing the performance of 13

training algorithms in BPNN for the prediction of blast-induced ground vibration. The training algorithms considered

include: Levenberg-Marquardt, Bayesian Regularisation, Broyden–Fletcher–Goldfarb–Shanno (BFGS) Quasi-Newton,

Resilient Backpropagation, Scaled Conjugate Gradient, Conjugate Gradient with Powell/Beale Restarts, Fletcher-Powell

Conjugate Gradient, Polak-Ribiére Conjugate Gradient, One Step Secant, Gradient Descent with Adaptive Learning Rate,

Gradient Descent with Momentum, Gradient Descent, and Gradient Descent with Momentum and Adaptive Learning Rate.

Using ranking values for the performance indicators of Mean Squared Error (MSE), correlation coefficient (R), number of

training epoch (iteration) and the duration for convergence, the performance of the various training algorithms used to build

the BPNN models were evaluated. The obtained overall ranking results showed that the BFGS Quasi-Newton algorithm

outperformed the other training algorithms even though the Levenberg Marquardt algorithm was found to have the best

computational speed and utilised the smallest number of epochs.

Keywords: Artificial Intelligence, Blast-induced Ground Vibration, Backpropagation Training Algorithms

1 Introduction

Artificial Neural Network (ANN) developed by

Warren McCulloch and Walter Pitts in 1943 is one

of the widely used supervised learning approaches

which was inspired by the structural complexity of

the human brain (Yegnanarayana, 2009). In the

1960’s the concept of the backpropagation

algorithm for neural network training was

introduced which was thereafter made popular by

Rumelhart et al. (1989) and hence the name

Backpropagation Neural Network (BPNN). The

BPNN can thus be described as feed forward neural

network which comprises of the input layer, the

hidden layer and the output layer. The role of the

input layer is to receive information from the real

world. These received input data are assigned

weights which define the strength of the connection

between input and hidden layer neurons with an

added bias term. The weighted inputs are then sent

to neurons in the hidden layer which are then

transformed by a nonlinear activation function. The

resulting output from the hidden layer is then sent

to the output layer where a linear activation

function is employed to produce the final output. It

is worth mentioning that, in the training process,

after each forward pass through a network,

backward pass is performed by backpropagation

with the aim of minimising the error between the

estimated network value and the expected

measured values by adjusting the model’s

parameters (weights and biases). These forward

and backward passes are repeated until the network

error converge at a minimum predetermined

threshold value.

Studies have shown that the critical task in

developing an effective and accurate BPNN model

depends on selecting an appropriate training

algorithm and fine-tuning certain factors such as

the transfer function, number of hidden layers and

number of hidden neurons (Zhu et al., 2005; Huang

et al., 2006; Huang et al., 2011). Despite the

numerous contributing factors for the development

of a BPNN model, the training algorithm plays a

key role in the BPNN final outputs. This is

because, it has been proven that a BPNN with one

hidden layer is enough to correctly fit any

continuous data (Hornik et al., 1989; Park and

Sandberg, 1991). Additionally, the number of

hidden neurons to be used is mostly determined by

the sequential trial and error procedure in the

model training (Braspenning et al., 1995; Sheela

and Deepa, 2013, Anifowose et al., 2017). The

common practice in the case of the activation

function is that the logistic or hyperbolic is usually

used in the hidden layer while a linear function is

used in the output layer (Garson, 1998; Beale et al.,

2017). Therefore, this study is focused on

*Manuscript received March 20, 2020

 Revised version accepted June 19, 2020

https://doi.org/10.4314/gmj.v20i1.3

https://doi.org/10.4314/gmj.v20i1.3

21

 GMJ Vol. 20, No.1, June, 2020

evaluating and comparing the performance of

thirteen (13) training algorithms in BPNN for the

prediction of blast-induced ground vibration. The

BPNN training algorithms found in literature and

applied in this study include the Levenberg-

Marquardt (trainLM), Bayesian Regularisation

(trainBR), Broyden–Fletcher–Goldfarb–Shanno

(BFGS) Quasi-Newton (trainBFGS), Resilient

Backpropagation (trainRP), Scaled Conjugate

Gradient (trainSCG), Conjugate Gradient with

Powell/Beale Restart (trainCGB), Fletcher-Reeves

Conjugate Gradient (trainCGF), Polak-Ribiére

Conjugate Gradient (trainCGP), One Step Secant

(trainOSS), Gradient Descent algorithm with

Adaptive Learning Rate (trainGDA), Gradient

Descent with Momentum (trainGDM), Gradient

Descent (trainGD) and Gradient Descent with

Momentum and Adaptive Learning Rate

(trainGDX) (Beale et al., 2019).

The motive of this study is that, only few of these

training algorithms have been applied by

researchers in the development of a BPNN model.

For instance, researchers such as Kişi and

Uncuoğlu (2005) investigated the use of the

trainLM, trainCGF and the trainRP for streamflow

forecasting and the lateral stress in cohesionless

soil determination. These three training algorithms

were compared based on their convergence

velocities in training and performance in testing.

The results showed that, although the trainLM

algorithm was found to be faster and having better

performance than the other algorithms in training,

the trainRP Algorithm had the best accuracy in the

testing period. Ceke et al. (2009) also investigated

the predictive performance of six training

algorithms in predicting mean glandular dose based

on measurable parameters in mammography. The

algorithms compared included the trainSCG,

trainCGB, trainBFGS, trainOSS, trainLM and

trainRP. Their prediction results showed that the

neural network model trained with trainLM

algorithm had best results compared to those

trained with the other training algorithms. Sandhu

and Chhabra (2011) also investigated the predictive

performance of trainSCG, trainCGB algorithm,

trainCGF algorithm, trainCGP algorithm in

reusability evaluation of procedure-based software

systems. The results obtained showed that the

trainSCG algorithm was the best. In Kaur and

Salaria (2013) trainBR, trainLM, trainGDX were

compared in developing a neural network for

software effort estimation. The trainBR was noted

to have performed more creditably than the other

algorithms for software effort estimation. Sharma

and Venugopalan (2014) in brain hematoma

classification compared the performance of

trainGD, trainGDM, trainRP, trainSCG, trainCGF,

trainCGP, trainBFGS and trainLM algorithms. It

was found that trainLM and trainSCG

outperformed the other algorithms. In Baghirli

(2015) the predictive abilities of the trainLM,

trainBR and the trainSCG algorithms were

investigated pertaining to the accuracy of the

multistep ahead monthly wind speed forecasting.

Kayri (2016) also investigated the predictive

capabilities of the trainLM and trainBR algorithms

on neural networks using social data. The trainBR

algorithm showed better performance than the

trainLM algorithm.

It can therefore be realised from the afore-

discussed instances that there is the need to explore

and evaluate the performance of the training

algorithms outlined by Beale et al. (2019). In this

study, the performance of BPNN trained with the

13 algorithms are evaluated to predict blast-

induced ground vibration. The motive is that

literature has shown that the BPNN trained with

trainLM is the most widely and successfully used

method for blast-induced ground vibration

(Khandelwal and Singh, 2007; Khandelwal and

Singh, 2009; Saadat et al., 2014; Taheri et al.,

2017; Arthur et al., 2020a). Therefore, the main

contribution of this study was to bring to light how

training algorithms affect the predictive

performance of BPNN in blast-induced ground

vibration prediction. This will further enhance and

bring up new dimension when applying the BPNN

for blast induced ground vibration prediction.

2 Resources and Methods Used

2.1 Resources

The study was carried out in a Manganese Mine in

Ghana with an area extension of latitude 5˚16ʹ

North and longitude 1˚59ʹ West as shown in Fig. 1.

Fig. 1 Study Area

The Mine adopts the use of drill and blast

techniques to fragment the in-situ rock mass into

appropriate rock sizes. In this regard, drill rigs and

emulsion are used in the drilling and blasting

processes respectively. The fragmented rocks are

either hauled to the crusher or waste dump using

22

 GMJ Vol. 20, No.1, June, 2020

CAT 777F, Komatsu HD 465, and Volvo AD35

rear dump trucks.

For the purpose of this study, a total of 210 historic

instances of blast data were collected from the

Mine. The blast data comprised of the following

parameters: number of blast holes, maximum

instantaneous charge (kg), distance between

blasting point and monitoring station (m), hole

depth (m), powder factor (kg/m
3
) and Peak Particle

Velocity (PPV) (mm/s). These recorded parameters

are deemed significant in affecting the levels of

blast-induced vibrations in literature It is

noteworthy that PPV is the most preferred

parameter for evaluating blast-induced ground

vibration (Iramina et al., 2018; Arthur et al.,

2020b). However, for the development of the

various models as presented in this study, number

of blast holes, maximum instantaneous charge (kg),

distance between blasting point and monitoring

station (m), hole depth (m), powder factor (kg/m
3
)

were used as the input parameters while the PPV

(mm/s) values served as the output parameter.

Table 1 shows the statistical description of the

input and output parameters used in this study. In

order to construct the various models in this study,

the collected datasets were divided into two sets:

training and testing sets. A total of 130 data points

representing 62% of the collected datasets were

used as the training sets while the remaining 80

data points representing 38% were used as the

testing datasets to independently assess the

performance of the trained models.

2.2 Backpropagation Training Algorithms

Used

In this section, concise descriptions of the training

algorithms is presented. The architectural

description of the BPNN is presented here as they

are extensively applied and explained in several

blast-induced ground vibration studies

(Khandelwal and Singh, 2007; Khandelwal and

Singh, 2009; Saadat et al., 2014; Taheri et al.,

2017; Arthur et al., 2020a).

2.2.1 Levenberg-Marquardt

The trainLM algorithm is an iterative technique for

finding the minimum of a multivariate error

function E (Equation (1)) that is expressed as the

sum of squares of the difference between the actual

output iy and target output it (Adeoti and

Osanaiye, 2013).

 
1

2
i iE y t  (1)

The trainLM was designed to approach second

order speed without having to compute the Hessian

matrix. Nevertheless, the Hessian matrix (H) as

well as the gradient (g) can be approximated using

Equations (2) and (3) respectively, when the

performance function has a form of sum of squares.

TH J J (2)
Tg J e (3)

where J is the Jacobian matrix containing the first

derivatives of the network errors with respect to the

biases and weights, and e is the network error

vector. The Jacobian matrix can be computed

through a standard backpropagation technique that

is much less complex than computing the Hessian

matrix (Baghirli, 2015). The trainLM algorithm

uses this approximation to the Hessian matrix in

the following Newton-like update (Equation (4)).

1

1

T T

i iw w J J μI J e



     (4)

where w represents connection weights, µ is the

damping term and I is the identity matrix. The

trainLM uses the combination of Gauss-Newton

method and gradient descent in its iterative process.

When the µ is zero, it becomes a Gauss-Newton

method, using the approximate Hessian matrix.

When the µ is large, it becomes a gradient descent

method having a small step size. Newton’s method

is faster and more accurate near an error minimum,

so the aim is to shift towards Newton’s method as

quickly as possible. Thus, µ is decreased after each

successful step (reduction in performance function)

and is increased only when a tentative step would

increase the performance function. In this way, the

performance function will always be reduced at

each iteration of the algorithm (Baghirli, 2015).

Table 1 Statistical Description of Parameters

Parameters Type Unit Min Max Average Std Dev

Number of blast holes

Inputs

- 19 355 122.50 52.37

Maximum instantaneous charge kg 11.60 123.49 90.08 19.54

Distance from blasting point to

monitoring station
m 573 1500 915.01 234.62

Hole depth m 3.73 12.58 10.45 1.14

Powder factor kg/m
3
 0.10 0.97 0.69 0.15

Peak Particle Velocity Output mm/s 0.13 1.65 0.79 0.32

23

 GMJ Vol. 20, No.1, June, 2020

2.2.2 Bayesian Regularisation

The trainBR is a training algorithm that updates the

weights and bias values according to Levenberg-

Marquardt optimisation (Kaur and Salaria, 2013). It

minimizes a combination of squared errors and

weights, and then determines the correct

combination to produce a network that generalizes

well (Kaur and Salaria, 2013). According to

Foresee and Hagan (1997), the method of

improving generalisation is referred to as

regularisation.

The aim of training is to reduce the sum of squared

error, ED. This implies that, the training objective

function is F = ED. However, regularisation adds

an additional term, EW. The objective function is

then expressed as shown in Equation (5) (Foresee

and Hagan, 1997).

D WF βE αE  (5)

where WE is the sum of squared of the network

weights; ED is the sum of network errors; α and β

are the objective function parameters. Foresee and

Hagan (1997) state that, the relative size of the

objective function parameters dictates the emphasis

for training. If α β, then the training algorithm

will drive the errors smaller and if α β, training

will emphasise weight size reduction at the expense

of network errors, thus producing a smoother

network problem. However, the main problem with

implementing regularisation is setting the correct

values for the objective function parameters. The α

and β factors are defined using the Bayes’ rule. The

procedure for finding the correct values of α and β

is explained by Foresee and Hagan (1997).

2.2.3 Broyden-Fletcher-Goldfarb-Shanno Quasi-

Newton

The trainBFGS algorithm is a Quasi-Newton

second-derivative line search family method for

solving unconstrained optimization problem

(Ibrahim et al., 2014). The trainBFGS uses

quadratic Taylor approximation of the objective

function in a d-vicinity of x (Biglari and Ebadian,

2015) as expressed in Equation (6).

       

 
1

2

T

T

f x d q d f x d g x

d H x d

   


 (6)

where g(x) is the gradient vector and H(x) is the

Hessian matrix. The necessary condition for a local

minimum of q(d) with respect to d results in the

linear system presented in Equation (7).

    0g x H x d  (7)

which in turn gives the Newton direction d

(Equation (8)) for line search.

   
1

d H x g x


   (8)

The exact Newton direction (which is subject to

defining in Newton-type methods) is reliable when

the Hessian matrix exists and positive definite with

the difference between the true objective function

and its quadratic approximation not being large.

In Quasi-Newton methods, the idea is to use

matrices which approximate the Hessian matrix

and/or its inverse, instead of exact computing of the

Hessian matrix (as in Newton-type methods). The

matrices are normally named B H and
1D H 

. The matrices are adjusted on each iteration and

can be produced in many different ways ranging

from very simple techniques to highly advanced

schemes. The trainBFGS method uses an updating

formula which converges to the approximate of the

Hessian matrix H(x*) as expressed in Equation (9).

1

T T

i i i i i i

i i T T

i i i i i

B s s B y y
B B

s B s y s
    (9)

where

1i i is x x 

1i i iy g g 

As a starting point, 0B can be set to any symmetric

positive definite matrix, for example and very

often, the identity matrix. The trainBFGS method

exposes super linear convergence; resource-

intensity is estimated as O(n
2
) per iteration for n-

component argument vector.

2.2.4 Resilient Backpropagation

The trainRP algorithm is a training algorithm for

neural networks that work similarly to the standard

backpropagation algorithm. The difference

however is in the way the connecting weights are

updated (Prasad et al., 2013). For the

backpropagation, the update is computed using the

magnitude of the partial derivative as expressed in

Equation (10).

     Δ jk j kw m α x m δ m   (10)

where α is the learning rate,  jx m denotes the

inputs propagating back to the ith neuron at time

step m and kδ is the corresponding error gradient.

For the trainRP, an individual delta Δ jk which

determines the size of the weight jkw update for

each connection is computed. The learning rule

expressed in Equation (11) is used in calculating

Δ jk .

24

 GMJ Vol. 20, No.1, June, 2020

 

 

   

 

   

 

Δ 1

if 1 0

Δ Δ 1

if 1 0

Δ 1 else

jk

jk jk

jk jk

jk jk

jk

m η ,

E E
m m

w w

m m η ,

E E
m m

w w

m ,





  


    
  



  


    
  




 (11)

where 0 1η η    . It is noteworthy that, for the

trainRP, the weight update is not influenced by the

magnitude of the derivatives, but by the behaviour

of the sign of the two succeeding derivatives.

Every time the partial derivative of the

corresponding weight
jkw changes its sign

indicating the last update was too big and that the

algorithm has jumped over a local minimum. The

update-value Δ jk
 is then decreased by the factor

η . If the derivative retains its sign, the updated

value is slightly increased in order to accelerate

convergence in shallow regions (Riedmiller and

Braun, 1992; Prasad et al., 2013).

The update rule for weights is the same as that

expressed in Equation (12), except that if the partial

derivative changes sign, the previous update-step

leading to a jump over the minimum is reverted to

Equation (13). When a change of sign has

occurred, the adaptation process is restarted. The

update-values and weights are changed every time

the whole pattern set has been presented to the

network.

 

 

 

0

0

Δ if 0

Δ +Δ if 0

 0 else

jk

jk

jk

E
, m

w

E
w m , m

w

,


  

 

 






 (12)

   

   

Δ Δ 1

 if 1 0

jk jk

jk jk

m m ,

E E
m m

w w

  

 
  

 

 (13)

2.2.5 Fletcher-Reeves Conjugate Gradient

The trainCGF algorithm is a variation of the

Conjugate Gradient method developed by Fletcher

and Reeves (1964). The algorithm can train any

network if its weight, net input, and transfer

functions have derivative functions.

Backpropagation is used to calculate derivatives of

performance with respect to the weight and bias

vectors M. Each vector Mi is adjusted according to

Equation (14).

 M M a dM  (14)

where dM is the search direction with a being the

parameter selected to minimise the performance

along the search direction. The line search function

is used to locate the minimum point. The first

search direction is the negative of the gradient of

performance. In succeeding iterations, the search

direction is computed from the new gradient and

the previous search direction according to Equation

(15).

 olddM gM β dM   (15)

where gM is the gradient. The parameter β can be

computed in several different ways. For the

Fletcher-Reeves variation of conjugate gradient it

is computed using Equation (16).

1 1

T

k k

k T

k k

g g
β

g g 

 (16)

where
1 1

T

k kg g 
 is the norm square of the previous

gradient and T

k kg g is the norm square of the

current gradient.

2.2.6 Polak-Ribiére Conjugate Gradient

The trainCGP algorithm is another version of the

conjugate gradient method proposed by Polak and

Ribiére (1969). As with the trainCGF algorithm,

the search direction (p) at each iteration is

determined by Equation (17).

1k k k kp g β p    (17)

For the Polak-Ribiére update, the constant βk is

computed using Equation (18).

1

1 1

Δ T

k k

k T

k k

g g
β

g g



 

 (18)

Equation (18) is the inner product of the previous

change in the gradient with the current gradient

divided by the norm squared of the previous

gradient.

2.2.7 Conjugate Gradient with Powell/Beale

Restarts

According to Sandhu and Chhabra (2011), the

search direction for all conjugate gradient

algorithms is occasionally reset to the negative of

the gradient. When the number of network’s

weights and biases equal the number of iterations,

the standard reset point has occurred. However,

there are other reset approaches that can improve

the training efficiency. One of these is the

Powell/Beale Restart approach (Powell, 1977;

Beale, 1972). This technique restarts if there is very

little orthogonality left between the current gradient

and the previous gradient (Sandhu and Chhabra,

25

 GMJ Vol. 20, No.1, June, 2020

2011). Equation (19) is used as a test to determine

when to reset the search direction to the negative of

the gradient.

2

1 0 2T

k k kg g . g  (19)

where kg is the gradient of the kth iteration. If this

condition is satisfied, the search direction is reset to

the negative of the gradient. This algorithm can

train any network if its weight, net input, and

transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of

performance with respect to the weight and bias

vectors M. Each vector Mi is adjusted using

Equation (14). The line search function is used to

locate the minimum point.

2.2.8 Scaled Conjugate Gradient

The trainSCG algorithm belongs to a class of

Conjugate Gradient methods developed by Møller

(1993). The trainSCG avoids the use of line search

in its computation unlike the other conjugate

gradient algorithms that require a line search for

each iteration. The trainSCG combines the model-

trust approach and the conjugate gradient approach

(Sandhu and Chhabra, 2011). During computation,

the trainSCG algorithm denotes the quadratic

approximation to the error E in a neighbourhood of

a point w by  
qw

E y (Equation (20)).

       
1

2

T T

qw
E y E w E w y y E w y    (20)

Hence, to determine the minimum of  
qw

E y , the

critical points for  
qw

E y must be found. The

critical points are the solution to the linear system

defined by Møller (1993). The Scaled Conjugate

Gradient algorithm can train any network as long

as its weight, net input, and transfer functions have

derivative functions (Sandhu and Chhabra, 2011).

2.2.9 One Step Secant Backpropagation

The trainOSS method is an attempt to bridge the

gap between the conjugate gradient algorithms and

the quasi-Newton (secant) algorithms (Mukkamala

et al., 2003). This algorithm does not store the

complete Hessian matrix. It however assumes that

at each iteration, the previous Hessian was the

identity matrix. This has the additional advantage

that the new search direction can be calculated

without computing the matrix inverse (Mukkamala

et al., 2003). The algorithm can train any network

if its weight, net input, and transfer functions have

derivative functions. Backpropagation is used to

calculate derivatives of performance with respect to

the weight and bias vectors M. Each vector Mi is

adjusted according to Equation (14) as in conjugate

gradient algorithms. The line search function is

used to locate the minimum point. The first search

direction is the negative of the gradient of

performance. In subsequent iterations, the search

direction is computed from the new gradient and

the change in the weights and gradients from the

previous iteration according to Equation (21).

   stepdM gM Ac M Bc dgM    (21)

here gM is the gradient, Mstep is the change in the

weights of the previous iteration, dgM is the change

in the gradient from the last iteration whereas Ac

and Bc are the combinational scalar products of

gM, Mstep and dgM

2.2.10 Gradient Descent

For the trainGD algorithm, the weights and biases

are updated in the direction of the negative gradient

of the performance function (Moini and Lakizadeh,

2011). Backpropagation is used to calculate

derivatives of performance function, Q with respect

to the weight and bias vectors M. Each vector Mi is

adjusted according to the gradient descent as

expressed in Equation (22).

dQ
dM α

dx
  (22)

where α is the learning rate. The learning rate is

multiplied by the negative of the gradient to

determine the changes to the weights and biases.

The larger the learning rate, the bigger the step

leading to unstable algorithm. However, the

smaller the learning rate the longer time it takes the

algorithm to converge.

2.2.11 Gradient Descent with Adaptive Learning

Rate

With standard trainGD algorithm, the learning rate

is held constant throughout training. The

performance of the algorithm is very sensitive to

the proper setting of the learning rate (Peteiro-

Barral and Guijarro-Berdiñas, 2013). If the learning

rate is set too high, the algorithm can oscillate and

become unstable. If the learning rate is too small,

the algorithm takes too long to converge. It is not

practical to determine the optimal setting for the

learning rate before training and in fact, the optimal

learning rate changes during the training process,

as the algorithm moves across the performance

surface. The performance of the trainGD algorithm

can be improved if the learning rate can change

during the training process. Thus, the trainGDA

algorithm. An adaptive learning rate attempts to

keep the learning step size as large as possible

while keeping learning stable. The learning rate is

made responsive to the complexity of the local

26

 GMJ Vol. 20, No.1, June, 2020

error surface (Peteiro-Barral and Guijarro-

Berdiñas, 2013).

An adaptive learning rate requires some changes in

the training procedure used by trainGD algorithm.

First, the initial network output and error are

calculated. At each iteration new weights and

biases are calculated using the current learning rate.

New outputs and errors are then calculated.

2.2.12 Gradient Descent with Momentum

The trainGDM allows a network to respond not

only to the local gradient, but also to recent trends

in the error surface acting like a lowpass filter

(Garcez et al., 2008). Momentum allows the

network to ignore small features in the error

surface. Without momentum, a network can get

stuck in a shallow local minimum. With

momentum a network can slide through such

entrapment.

The trainGDM algorithm depends on two training

parameters: namely the learning rate, α and the

momentum constant γ . The momentum constant

defines the amount of momentum which is set

between 0 (no momentum) and values close to 1

(lots of momentum). A momentum constant of 1

(one) results in a network that is completely

insensitive to the local gradient and therefore, does

not learn properly. Backpropagation is used to

calculate derivatives of performance function Q

with respect to the weight and bias vectors M. Each

vector Mi is adjusted according to gradient descent

with momentum as expressed in Equation (23).

   1previous

dQ
dM γ dM α γ

dM
      (23)

where
previousdM is the previous change to the

weight or bias.

2.2.13 Gradient Descent with Momentum and

Adaptive Learning Rate

The trainGDX algorithm combines adaptive

learning rate with momentum training. It is similar

to the trainGDA except that it has the momentum

coefficient γ as an additional training parameter

(Galaviz et al., 2010). The algorithm can train any

network as long as its weight, net input, and

transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of

performance Q with respect to the weight and bias

vectors M. Each vector Mi is adjusted according to

gradient descent with momentum as expressed in

Equation (24).

 previous

dQ
dM γ dM α γ

dM
     (24)

where
previousdM is the previous change to the

weight or bias and α is the learning rate. For each

iteration when the performance decreases toward

the set goal, then the learning rate is increased by

the factor (typically 1.05). If performance increases

by more than the factor (typically 1.04), the

learning rate is adjusted by the factor (typically 0.7)

and the change that increased the performance is

not made.

2.3 Model Development and Performance

Assessment

2.3.1 Data Normalisation

The collected data had varying input ranges and

hence the possibility of the larger range values to

affect the outcome of the prediction. Hence to

avoid this, the various input parameters were

normalised into the range [-1, 1] using Equation

(25).

   max min i min

i min

max min

P P Q Q
P P

Q Q

  
 


 (25)

where iP denotes the normalised data, iQ denotes

the collected blast data and maxQ and minQ

represent maximum and minimum values of the

collected data with minP and maxP values equalling

to –1 and 1, respectively.

2.3.2 Model Development

In order to ascertain the predictive performance of

the BPNN based on the various training algorithms,

the other critical parameters that required fine-

tuning were predetermined to serve as the

background for this study. Hence, one hidden layer

with a hyperbolic tangent transfer function as well

as one output layer with a linear transfer function

were used for this study as iterated by Hornik et al.

(1989), Braspenning et al. (1995) and Beale et al.

(2017). Throughout the experimental process, 1

neuron out of 1 to 20 neurons investigated, in the

hidden layer was established to be the optimum

number of neuron required for the effective

development of the BPNN models used in this

study. It is worth mentioning that the sequential

trial and error procedure for the establishment of

the optimal structure of the BPNN models was not

presented in this study. Therefore, a model

structure of [5 – 1 – 1] meaning, 5 inputs, one

hidden layer with 1 neuron and 1 output layer was

used in this study to ascertain the performance of

the various training algorithms. Moreover, in this

study, the BPNN was trained for 8000 epochs with

a learning rate of 0.03 and a momentum coefficient

of 0.7. The MATLAB R2019a program was used

to run the BPNN based on the 13 algorithms (Table

27

 GMJ Vol. 20, No.1, June, 2020

2) discussed in Section 2.2. It is noteworthy that a

computer with an Intel(R) Core (TM) i7-8550U

CPU @ 1.80GHz, 1.99 GHz processor was used to

run the MATLAB program for the various training

functions. In Table 2, the syntax for the various

training functions defined in the MATLAB

environment are presented.

2.3.3 Model Performance Assessment

Performance indices of Mean Squared Error (MSE)

(Equation (26)), correlation coefficient (R)

(Equation (27)), number of epochs (iterations) and

duration for convergence were used to assess the

performance of developed BPNN models with their

respective training algorithms. The values for each

set of performance indices for the respective

training algorithms were ranked according to the

order of performance, with good performing values

having higher ranking values. Afterwards, the total

ranking values were computed to ascertain the best

performing training algorithm.

 
2

1

1 n

i i

i

MSE m p
n 

  (26)

  

   

1

2 2

1 1

n

i i

i

n n

i i

i i

m m p p

R

m m p p



 

 



  



 

 (27)

where n, im , ip , m and p are the total number

of samples, the measured field values, the predicted

field values, the mean of the measured field values

and the mean of the predicted values respectively.

3 Results and Discussion

The obtained ranking results based on the number

of training epochs (iterations) and duration of

convergence (time) are outlined in Table 3.

From Table 3, it can be gathered that, the trainLM

algorithm used the minimum number of training

epoch of 12 to converge at the optimal solution and

thus had the highest-ranking value. It also had the

fastest convergence speed of 2 seconds. This is

because the trainLM algorithm works by

combining the steepest descent and the Gauss-

Newton methods to give optimal solution. Thus,

the algorithm performs like steepest descent when

the current solution is close to local minimum but

exhibit fast convergence in the Gauss-Newton

condition when the algorithm approaches the

correct solution (Lourakis and Argyros, 2005). The

trainBR algorithm followed up with training epoch

and fast convergence speed of 34 and 5 seconds

respectively (Table 3).

The trainCGF algorithm had a faster convergence

speed (7 seconds) than the trainBFGS algorithm (9

seconds), even though the trainBFGS algorithm

used a smaller number of iterations to converge.

The trainOSS (Table 3) was also faster than the

trainSCG algorithm but required more iterations to

converge. The trainCGB and the trainCGP

algorithms had close convergence speed (13 and 12

seconds) and number of iterations (82 and 81)

respectively to arrive at the optimal solution. The

trainRP had a relatively fast convergence speed of

38 seconds. However, it required a large number of

epochs (3817) to converge at the optimal solution.

In Table 3, it can also be observed that, the trainGD

algorithm and its variations were the slowest with a

convergence speed above 1320 seconds (22

minutes) and training epochs of more than 7000 to

converge to their optimal solutions. To illustrate

graphically the performance of the various training

algorithms, the ranking results of the training

epochs and duration of convergence were plotted

against each other (see Fig. 2).

Table 2 Backpropagation Training Functions and their Respective Algorithms

Training Function Syntax

in MATLAB
Algorithm Type Abbreviation

trainlm Levenberg-Marquardt trainLM

trainbr Bayesian Regularisation trainBR

trainscg Scaled Conjugate Gradient trainSCG

trainbfg Broyden–Fletcher–Goldfarb–Shanno Quasi-Newton trainBFGS

traincgb Conjugate Gradient with Powell/Beale Restarts trainCGB

traincgp Polak-Ribiére Conjugate Gradient trainCGP

traincgf Fletcher-Reeves Conjugate Gradient trainCGF

traingd Gradient Descent trainGD

traingdm Gradient Descent with Momentum trainGDM

traingda Gradient Descent with Adaptive Learning Rate trainGDA

traingdx
Gradient Descent with Momentum and Adaptive Learning

Rate
trainGDX

trainoss One Step Secant trainOSS

trainrp Resilient Backpropagation trainRP

28

 GMJ Vol. 20, No.1, June, 2020

The analysis from Fig. 2 is that any training

algorithm that appears on the top most right corner

is better than those that appear on the below and

found at the bottom left corner. In Fig. 2, it can be

seen that the trainLM appeared at the top right

corner emerging as the best in training epoch and

fast convergence. The trainGD algorithm and its

variations performed badly as they were located at

the left bottom corner. The slowness of the trainGD

algorithms to converge has been reiterated by

Luhaniwal (2019). It was evident that the gradient

descent methods move down a local gradient such

that this gradient does not point towards the

minimum, given the curvature of the underlining

function differs significantly with direction

(Nabney, 2002). Furthermore, even if a smaller

learning rate is chosen, there is a high possibility

for successive iterations to oscillate across ‘valleys’

in the function (Nabney, 2002).

Fig. 2 Training Epoch Ranking against Time

Ranking

In furtherance to the performance analysis, R and

MSE training results with their respective rankings

are presented in Table 4. With reference to Table 4,

it can be observed that the prediction results based

on the training datasets were marginally the same.

However, to ascertain the optimal training

algorithm, the obtained R and MSE values for each

training algorithm were ranked. The ranking results

(Table 4) showed that, the trainBFGS algorithm

gave the highest R value and lowest MSE value.

This was closely followed in the order of

decreasing performance by trainLM, trainSCG,

trainRP, trainOSS, trainCGB, trainCGF, trainGDX,

trainCGP, trainBR, trainGDA, trainGD and

trainGDM. This can additionally be viewed from

Fig. 3 where trainBFGS algorithm appeared on the

top right corner indicating its superiority over the

other training algorithms. Similarly, the ranking

testing results based on R and MSE values for each

training algorithm are presented in Table 5.

Fig. 3 Training R Ranking against MSE

Ranking Results

Table 3 Training Epoch and Time Ranking Results

Training Algorithm Training Epoch Ranking Time (sec) Ranking

trainLM 12 13 2 13

trainBR 34 12 5 12

trainBFGS 61 11 9 10

trainCGF 105 8 7 11

trainCGP 81 10 12 9

trainCGB 82 9 13 8

trainOSS 294 6 14 7

trainSCG 188 7 31 6

trainRP 3817 5 38 5

trainGD 8000 2 1330 4

trainGDM 8000 2 1361 3

trainGDA 7183 4 2001 1

trainGDX 8000 2 1510 2

29

 GMJ Vol. 20, No.1, June, 2020

Table 4 Training Ranking Results

Training Algorithm

Training Results

R Ranking MSE Ranking

trainBFGS 0.9090005754583 13 0.0209017892774 13

trainLM 0.9090005754579 12 0.0209017892775 12

trainSCG 0.9090005754561 11 0.0209017892778 11

trainRP 0.9090005754453 10 0.0209017892802 10

trainOSS 0.9090005754161 9 0.0209017892866 9

trainCGB 0.9090005751572 8 0.0209017893469 8

trainCGF 0.9090003062234 7 0.0209018497356 7

trainGDX 0.9089999984241 6 0.0209019166768 6

trainCGP 0.9089991077789 5 0.0209021134156 5

trainBR 0.9089275530420 4 0.0209230456845 4

trainGDA 0.9079688866458 3 0.0211538725254 3

trainGD 0.9077256163441 2 0.0211813116335 2

TrainGDM 0.9076340091090 1 0.0212013319689 1

Table 5 Testing Ranking Results

Training Algorithm

Testing Results

R Ranking MSE Ranking

trainOSS 0.8537001504187 13 0.0216959930735 13

trainBFGS 0.8536998643984 12 0.0216960613531 12

trainSCG 0.8536998515411 11 0.0216960677706 11

trainLM 0.8536998272836 10 0.0216960710372 10

trainRP 0.8536997263504 9 0.0216960941277 9

trainCGB 0.8536982722252 8 0.0216964067015 8

trainCGF 0.8536625479130 7 0.0217023197188 7

trainGDX 0.8536620969792 6 0.0217034459559 6

trainCGP 0.8536313149995 5 0.0217110148640 5

trainBR 0.8528831275419 4 0.0218197614089 4

trainGD 0.8496588256014 2 0.0224272490166 3

trainDGA 0.8510589037442 3 0.0225051033507 1

trainGDM 0.8494726322899 1 0.0224601694095 2

It can be noticed from Table 5 that, a very closely

related results (R and MSE) was produced by the

training algorithms and that their differences are

very insignificant. In comparison, the trainOSS

algorithm produced the highest R value and lowest

MSE which was followed by trainBFGS algorithm.

The trainSCG, trainLM, trainRP, trainCGB,

trainCGF, trainGDX, trainCGP, trainBR, trainGD,

trainDGA and trainGDM algorithms followed in

that order of decreasing performance as

additionally illustrated in Fig. 4. Finally, the

obtained ranking results (training and testing)

based on the various performance indicators were

30

 GMJ Vol. 20, No.1, June, 2020

summed to obtain the overall ranking results for the

various training algorithms as shown in Table 6.

Fig. 4 Testing R Ranking against MSE Ranking

Results

Table 6 Overall Ranking Based on Training and

Testing Results for Epoch, Time, R and

MSE

Training

Algorithm

Sum of All

Ranking

Values

Overall

Rank

Position

trainBFGS 71 1

trainLM 70 2

trainSCG 57 3

trainOSS 57 3

trainCGB 49 5

trainRP 48 6

trainCGF 47 7

trainBR 40 8

trainCGP 39 9

trainGDX 28 10

trainGD 15 11

trainGDA 15 11

trainGDM 10 13

With reference to Table 6, it can be observed that

the trainBFGS algorithm had the highest total

ranking value of 71 making it the best training

algorithm for this study. This was closely followed

by the trainLM algorithm which had a total ranking

of 70. The trainBFGS algorithm and the trainLM

algorithm have been stated by Beale et al. (2019) to

have similar performance as was observed in this

study. Both the trainSCG and trainOSS algorithms

had the same total ranking value of 57 and thus the

same rank position. These were followed by the

trainCGB, trainRP, trainCGF, trainBR, trainCGP

algorithms in increasing overall rank value, as

higher overall rank position signifies lower

performance. It can also be seen that, the trainGD

and its variational algorithms had very poor total

ranking values and thus were the worst performing

training algorithms for this study. These rank

positions of the various training algorithms are

graphically illustrated in Fig. 5.

The trainBFGS algorithm came out the best due to

its robustness and self-correcting properties to

maintain a satisfaction of the secant condition. In

addition to that, it has a good initial approximation

of the inverse Hessian matrix (Ding et al., 2004;

Eisen et al., 2017).

Fig. 5 Order of Rank of Training Algorithms

4 Conclusions

In this study, 13 backpropagation neural network

training algorithms namely; Levenberg-Marquardt,

Bayesian Regularisation, BFGS Quasi-Newton,

Resilient Backpropagation, Scaled Conjugate

Gradient, Conjugate Gradient with Powell-Beale

Restarts, Fletcher-Powell Conjugate Gradient,

Polak-Ribiére Conjugate Gradient, One Step

Secant, Gradient Descent with adaptive Learning

Rate, Gradient Descent with Momentum, Gradient

Descent and Gradient Descent with Momentum

and Adaptive Learning Rate were investigated to

ascertain their performance based on the prediction

of blast-induced ground vibration. In that regard,

31

 GMJ Vol. 20, No.1, June, 2020

13 BPNN models were developed using a total of

210 blasting events data collected from a

Manganese Mine in Ghana. One hundred and thirty

(130) datapoints out of the 210 were used as the

training set while the remaining 80 data points

were used to independently assess the BPNN

models developed. The input parameters for the

models include number of blast holes, maximum

instantaneous charge (kg), distance between

blasting point and monitoring station (m), hole

depth (m) and powder factor (kg/m
3
) with PPV

(mm/s) serving as the measuring indicator of blast-

induced ground vibration in the output layer. With

the aim of ascertaining the performance of the

training algorithms, the optimum structure of [5-1-

1] meaning, five inputs, one hidden layer with one

neuron and one output layer was observed for all

the training algorithms. The maximum training

epoch, learning rate and momentum coefficient

were set to 8000, 0.03 and 0.7 respectively.

Furthermore, R, MSE, number of training epochs

and the duration of convergence to the optimal

solution were used in ascertaining the performance

of the various training algorithms. Each resulting

performance indicator was ranked and then

summed up to ascertain the overall predictive

strength of the training algorithms. The obtained

results showed that the Levenberg-Marquardt

algorithm had the fastest computational speed as it

used 2 seconds and 12 epochs to arrive at its

optimal solution. The gradient descent and its

variation algorithms were found to be very slow as

they used more than 1320 seconds (22 minutes) to

arrive at their optimal solution. They also used a

maximum training epoch of more than 7000. In the

case of training prediction results, the BFGS Quasi-

Newton algorithm had the highest R values and

lowest MSE values and thus the highest-ranking

value even though the other training algorithms

achieved marginal results. In the case of the testing

results, it was found that the One Step Secant

algorithm was able to perform slightly better than

all the other training algorithms. However, the

summed ranking results showed that the BFGS

Quasi-Newton algorithm was the best training

algorithm for this study as it had the highest total

value of 71 and thus an overall rank value of 1.

This was closely followed by the Levenberg-

Marquardt, Conjugate Gradient, One Step Secant

algorithms, Conjugate Gradient with Powell/Beale

Restarts algorithm, Resilient Backpropagation,

Fletcher-Reeves Conjugate Gradient, Bayesian

Regularisation, Polak-Ribiére Conjugate Gradient,

Gradient Descent with Momentum and Adaptive

Learning Rate, Gradient Descent, Gradient Descent

with Adaptive Learning Rate and finally the

Gradient Descent with Momentum in a decreasing

order of performance.

Acknowledgements

The authors would like to thank the Ghana

National Petroleum Corporation (GNPC) for

providing funding to support this work through the

GNPC Professorial Chair in Mining Engineering at

the University of Mines and Technology (UMaT),

Ghana.

References

Adeoti, O. A. and Osanaiye, P. A. (2013), “Effect

of Training Algorithms on The Performance of

ANN for Pattern Recognition of Bivariate

Process”, International Journal of Computer

Applications, Vol. 69, No. 20, pp. 8 – 12.

Anifowose, F., Labadin, J. and Abdulraheem, A.

(2017), “Towards an Improved Ensemble

Learning Model of Artificial Neural Networks:

Lessons Learned on Using Randomized

Numbers of Hidden Neurons”, In Artificial

Intelligence: Concepts, Methodologies, Tools,

and Applications, IGI Global, pp. 325-356.

Arthur, C. K., Temeng, V. A. and Ziggah, Y. Y.

(2020a), “Multivariate Adaptive Regression

Splines (MARS) Approach to Blast-Induced

Ground Vibration Prediction”, International

Journal of Mining, Reclamation and

Environment, Vol. 34, No .3, pp. 198-222.

Arthur, C. K., Temeng, V. A. and Ziggah, Y. Y.

(2020b), “Novel Approach to Predicting Blast-

Induced Ground Vibration Using Gaussian

Process Regression”, Engineering with

Computers, Vol. 36, No. 1, pp.29-42.

Baghirli, O. (2015), “Comparison of Lavenberg-

Marquardt, Scaled Conjugate Gradient and

Bayesian Regularization Backpropagation

Algorithms for Multistep Ahead Wind Speed

Forecasting Using Multilayer Perceptron

Feedforward Neural Network”, Published MSc

Thesis Report, Uppsala University, Gotland, 35

pp.

Beale, E. M. L. (1972), “A Derivation of Conjugate

Gradients”, In Numerical methods for nonlinear

optimization, Lootsma, F.A. (ed.), Academic

Press, London, pp. 39–43.

Beale, M. H., Hagan, M. T. and Demuth, H. B.

(2017), Neural Network Toolbox™ User's

Guide, The MathWorks Inc, USA, 431 pp.

Beale, M. H., Hagan, M. T. and Demuth, H. B.

(2019), MATLAB Deep Learning Toolbox™

User’s Guide: PDF Documentation for Release

R2019a, The MathWorks Inc, USA, 431 pp.

Biglari, F. and Ebadian, A. (2015), “Limited

Memory BFGS Method Based on a High-Order

Tensor Model”, Computational Optimization

and Applications, Vol. 60, No. 2, pp. 413-422.

Braspenning, P. J., Thuijsman, F. and Weijters, A.

J. M. M. (1995), Artificial Neural Networks: An

32

 GMJ Vol. 20, No.1, June, 2020

Introduction to ANN Theory and Practice,

Springer Science & Business Media, 293 pp.

Ceke, D., Kunosic, S., Kopric, M. and Lincender,

L. (2009), “Using Neural Network Algorithms

in Prediction of Mean Glandular Dose Based on

the Measurable Parameters in Mammography”,

Acta Informatica Medica, Vol. 17, No. 4,

pp.194-197.

Ding, Y., Lushi, E. and Li, Q. (2004),

“Investigation of Quasi-Newton Methods for

Unconstrained Optimization”, Published

Report, Simon Fraser University, Canada, 23

pp.

Eisen, M., Mokhtari, A. and Ribeiro, A. (2017),

“Decentralized Quasi-Newton Methods”, IEEE

Transactions on Signal Processing, Vol. 65, No.

10, pp. 2613-2628.

Fletcher, R. and Reeves, C. M. (1964), “Function

Minimization by Conjugate Gradient”, The

Computer Journal, Vol. 7, No. 2, pp.149-154.

Foresee, F. D. and Hagan, M. T. (1997), “Gauss-

Newton approximation to Bayesian learning”,

Proceedings of the International Joint

Conference on Neural Networks, Vol. 3, pp.

1930-1935

Galaviz, J. P., Melin, P. and Trujillo, L. (2010),

“Improvement of the Backpropagation

Algorithm Using (1+ 1) Evolutionary

Strategies”, In Soft Computing for Recognition

Based on Biometrics, Springer, Berlin,

Heidelberg. pp. 287-302.

Garcez, A. S. A., Lamb, L. C. and Gabbay, D. M.

(2008), Neural-Symbolic Cognitive Reasoning,

Springer Science & Business Media, 198 pp.

Garson, G. D. (1998), Neural Networks: An

Introductory Guide for Social Scientists, SAGE,

194 pp.

Ghasemi, E., Ataei, M. and Hashemolhosseini, H.

(2013), “Development of a Fuzzy Model for

Predicting Ground Vibration Caused by Rock

Blasting in Surface Mining”, Journal of

Vibration and Control, Vol. 19, No. 5, pp.755-

770.

Hasanipanah, M., Amnieh, H. B., Khamesi, H.,

Armaghani, D. J., Golzar, S. B. and Shahnazar,

A. (2018), “Prediction of an Environmental

Issue of Mine Blasting: An Imperialistic

Competitive Algorithm-Based Fuzzy System”,

International Journal of Environmental Science

and Technology, Vol. 15, No. 3, pp. 551-560.

Hornik, K., Stinchcombe, M. and White, H. (1989),

“Multilayer Feed Forward Networks are

Universal Approximators”, Neural Network,

Vol. 2, No. 5, pp. 359 – 366.

Huang, G. B., Zhou, H., Ding, X. and Zhang, R.,

(2011), “Extreme Learning Machine for

Regression and Multiclass Classification”, IEEE

Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), Vol. 42, No.

2, pp. 513-529.

Huang, G. B., Zhu, Q. Y. and Siew, C. K. (2006),

“Extreme Learning Machine: Theory and

Applications”, Neurocomputing, Vol. 70,

pp.489-501.

Ibrahim, M. A. H., Mamat, M. and Leong, W. J.

(2014), “The Hybrid BFGS-CG Method in

Solving Unconstrained Optimization Problems”,

Abstract and Applied Analysis, Vol. 2014, pp. 1

– 6.

Iramina, W. S., Sansone, E. C., Wichers, M.,

Wahyudi, S., Eston, S. M. D., Shimada, H. and

Sasaoka, T. (2018), “Comparing Blast-Induced

Ground Vibration Models Using ANN and

Empirical Geomechanical Relationships’, REM-

International Engineering Journal, Vol. 71, No.

1, pp.89-95.

Kaur, H. and Salaria, D. S. (2013), “Bayesian

Regularization Based Neural Network Tool for

Software Effort Estimation”, Global Journal of

Computer Science and Technology, Vol. 13, No.

2, pp. 44 – 50.

Kayri, M. (2016), “Predictive Abilities of Bayesian

Regularization and Levenberg–Marquardt

Algorithms in Artificial Neural Networks: A

Comparative Empirical Study on Social Data”,

Mathematical and Computational Applications,

Vol. 21, No. 20, pp. 1 – 11.

Khandelwal, M. and Singh, T. N. (2007),

“Evaluation of Blast-Induced Ground Vibration

Predictors”, Soil Dynamics and Earthquake

Engineering, Vol. 27, No. 2, pp. 116 – 125.

Khandelwal, M. and Singh, T. N. (2009),

“Prediction of Blast-Induced Ground Vibration

Using Artificial Neural Network”, International

Journal of Rock Mechanics and Mining

Sciences, Vol. 46, No. 7, pp. 1214–1222.

Kişi, Ӧ. and Uncuoğlu, E. (2005), “Comparison of

Three Back-propagation Training Algorithm for

Two Case Studies”, Indian Journal of

Engineering and Materials Science, Vol. 12, pp.

434 – 442

Lourakis, M. L. A. and Argyros, A. A. (2005), “Is

Levenberg-Marquardt the most efficient

optimization algorithm for implementing bundle

adjustment?”, Proceedings of the Tenth IEEE

International Conference on Computer Vision

(ICCV'05), pp. 1526-1531.

Luhaniwal, V. (2019), “Why Gradient Descent

Isn’t Enough: A Comprehensive Introduction to

Optimization Algorithms in Neural Networks”,

https://towardsdatascience.com/why-gradient

descent-isnt-enough-a-comprehensive-

introduction-to-optimization-algorithms-in-

59670fd5c096, Accessed: March 27, 2020.

Moini, M. and Lakizadeh, A. (2011), Concrete

Workability: An Investigation on Temperature

Effects Using Artificial Neural Networks,

AuthorHouse. 148 pp.

Møller, M. F. (1993), “A Scaled Conjugate

Gradient Algorithm for Fast Supervised

33

 GMJ Vol. 20, No.1, June, 2020

Learning”, Neural Networks, Vol. 6, No. 4, pp.

525-533.

Mukkamala, S., Sung, A. H. and Abraham, A.

(2003), “Intrusion Detection Using Ensemble of

Soft Computing Paradigms”, In Intelligent

Systems Design and Applications, Springer,

Berlin, Heidelberg, pp. 239-248.

Nabney, I. (2002), NETLAB: Algorithms for

Pattern Recognition, Springer Science &

Business Media, 420 pp.

Orozco, J. and García, C. A. R. (2003), “Detecting

Pathologies from Infant Cry Applying Scaled

Conjugate Gradient Neural Networks”, In

European Symposium on Artificial Neural

Networks, Bruges (Belgium), Vol. 2003, pp. 1-

7.

Park, J. and Sandberg, I. W. (1991), “Universal

Approximation Using Radial-Basis-Function

Networks”, Neural Computation, Vol. 3, No. 2,

pp.246-257.

Peteiro-Barral, D. and Guijarro-Berdiñas, B.

(2013), “A Study on the Scalability of Artificial

Neural Networks Training Algorithms Using

Multiple-Criteria Decision-Making Methods”,

Proceedings of the International Conference on

Artificial Intelligence and Soft Computing,

Springer, Berlin, Heidelberg, pp. 162-173.

Polak, E. R. and Ribière, G. (1969), “Note Sur la

Convergence de Methodes de Directions

Conjugat”, Revue Francaise d’Informatique et

Recherche Operationnelle, Vol. 16, pp. 35 – 43.

Powell, M. J. D. (1977), “Restart Procedures for

the Conjugate Gradient Method”, Mathematical

Programming, Vol. 12, No. 1, pp.241-254.

Prasad, N., Singh, R. and Lal, S. P. (2013),

“Comparison of Back Propagation and Resilient

Propagation Algorithm for Spam

Classification”, Proceedings of the 2013 Fifth

International Conference on Computational

Intelligence, Modelling and Simulation, pp. 29-

34.

Riedmiller, M. and Braun, H. (1992), “RPROP. A

Fast Adaptive Learning Algorithm”

Proceedings of the 1992 International

Symposium on Computer and Information

Sciences, Antalya, Turkey, pp.279-285.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J.

(1986), “Learning Representations by Back-

Propagating Errors”, Nature, Vol. 323, No.

6088, pp.533-536.

Saadat, M., Khandelwal, M. and Monjezi, M.

(2014), “An ANN-Based Approach to Predict

Blast-Induced Ground Vibration of Gol-E-

Gohar Iron Ore Mine, Iran”, Journal of Rock

Mechanics and Geotechnical Engineering, Vol.

6, No. 1, pp. 67 – 76.

Sandhu, P. S. and Chhabra, S. (2011), “A

Comparative Analysis of Conjugate Gradient

Algorithms and PSO Based Neural Network

Approaches for Reusability Evaluation of

Procedure Based Software Systems”, Chiang

Mai Journal of Science, Vol. 38, No. 2, pp.123-

135.

Sharma, B. and Venugopalan, K. (2014),

“Comparison of Neural Network Training

Functions for Hematoma Classification in Brain

CT Images”, IOSR Journal of Computer

Engineering, Vol. 16, No. 1, pp.31-35.

Sheela, K. G. and Deepa, S. N. (2013), “Review on

Methods to Fix Number of Hidden Neurons in

Neural Networks”, Mathematical Problems in

Engineering, pp. 1 – 11.

Taheri, K., Hasanipanah, M., Golzar, S. B. and

Majid, M. Z. A. (2017), “A Hybrid Artificial

Bee Colony Algorithm-Artificial Neural

Network for Forecasting the Blast Produced

Ground Vibration”, Engineering with

Computers, Vol. 33, No. 3, pp.689-700.

Yegnanarayana, B. (2009), Artificial Neural

Networks, PHI Learning Pvt. Ltd., 461 pp.

Zhu, Q. Y., Qin, A. K., Suganthan, P. N. and

Huang, G. B. (2005), “Evolutionary extreme

learning machine”, Pattern Recognition, Vol.

38, No. 10, pp.1759-1763.

Authors

C. K. Arthur is a Lecturer in Mining
Engineering at the University of Mines and

Technology (UMaT), Tarkwa. He obtained

his BSc (Hons.) and PhD degrees in
Mining Engineering from UMaT. His

areas of specialisation include Machine

Learning, Artificial Intelligence, Operation
Research Engineering, Optimisation of

Mining Systems, Explosive and Blasting

Technology.

V. A. Temeng is an Associate Professor in

Mining Engineering at the University of
Mines and Technology (UMaT), Tarkwa.

He obtained his BSc (Hons.) and PgD in

Mining Engineering degrees from UMaT.
He holds MSc degree from the University of

Zambia and PhD degree from the Michigan
Technological University. He is a member

of the Society of Mining, Metallurgy and Exploration (MSME)

and a member of the Ghana Institution of Engineers (GhIE). His
areas of specialisation include Operations Research, Materials

Handling and Computer Applications.

Y. Y. Ziggah is a Lecturer at the Geomatic

Engineering Department of the University of

Mines and Technology (UMaT). He holds a
BSc in Geomatic Engineering from Kwame

Nkrumah University of Science and

Technology, Kumasi, Ghana. He obtained his
Master of Engineering degree and PhD in

Geodesy and Survey Engineering from China

University of Geosciences (Wuhan). His research interests
include artificial intelligent application in engineering, geodetic

coordinate transformation, gravity field modelling, height

systems and geodetic deformation modelling.

