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Abstract

Siltation involves the accumulation of sediment over a considerable period of time and this may occur in closed
systems like leaching tanks. Most mining companies in Ghana experience siltation problems during leaching of
gold ore. This paper examines the potential causes and possible mitigation measures of siltation. Particle size
analysis, slurry settling rate tests and agitation efficiency analysis were used in identifying causative factors of
siltation whiles deflocculation test and grind analysis were conducted to ascertain mitigation measures. Results
from the study indicated that, high settling velocity of particles, inefficient milling and classification, poor slurry
agitation and particle flocculation were the major causative factors leading to siltation. Size analysis results
revealed Pg; of 106 um instead of Pgy of 106 pum, a situation which affects particle suspension by agitators
leading to siltation. This study therefore suggests that increase in milling residence time and particle
deflocculation are potential remediation measures for curbing siltation. Extended grinding of ball mill feed
resulted in 94% passing 106 um while settling velocity was reduced by 71% after deflocculant addition at 1000
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1 Introduction cause repeated settling or siltation during leaching
in tanks.
Most mineral extraction operations begin with a ) _ _
comminution process to liberate the mineral of The _presence of coarse materlaI.s mn legchlng
interest. Comminution is the progressive reduction circuits also affects particle suspension by agitators
in the size of an ore to a suitable size range to due to the smaller. surface area and higher Qrag
liberate the mineral of interest from the worthless forces of such particles in a turbplent flow regime.
gangue material or shorten the travel distance of These effects cause them to gravitate to the bottom
reagents during leaching. In a typical gold of containing vessels as a result of gravitational,
extraction plant where agitation leaching is centrifugal or any external force acting on the
employed, comminution may be accomplished particle and thus, enhance sedimentation (Walsh,
stepwise through a circuit made of a primary 198.8; Concha, 2009).' The accumulatloq of such
crusher, Semi Autogenous Grinding (SAG) mill sediments over a considerable period of time leads
and ball mills. The SAG and ball mills generally to siltation, a situation which is faced by most
have independent cyclones to classify their mining and mineral processing companies.
products (Wills, 2006; Amankwah and Ofori-
Sarpong, 2011). Siltation leads to the formation of a stationary bed
at the bottom of the leach tank over a considerable
In this era of low grade ores and low metal price period of time anq is a major problem in agitation
regimes, most plants now operate on high tonnage tanks, where particles intended for suspension get
and leaching is conducted at pulp densities in settled based on .several factors. ThlS. process
excess of 50% solids instead of conventional values reduces the effective volume of leaching tanks
between 40% and 45%. Thus, the classifier available for leaching which also reduces the
overflow material is prepared for leaching by tonnage of ore that can be processed within a
passing it through a thickener to obtain the given residence time. Coarse gold particles present
appropriate feed density in excess of 50% solids. in such tanks gravitate to the bottom due to their
The thickening process requires the use of high drag force and get locked up in the silt
flocculants and this chemical that assists in material. Coarse gold locked up in silt materials in
thickening may have a carry-over effect and also some gold processing plants are as high as 53 g/t

(Konadu et al., 2014). In this research, causative
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factors for siltation of tanks in the Carbon-in-Leach
Plant of Gold Fields Ghana Ltd at Tarkwa were
investigated. The mitigation measures to siltation
are also proposed.

2 Resources and Methods Used

2.1 Materials

The samples used in this study were Semi
Autogeneous Grinding (SAG) mill cyclone
overflow product, ball mill feed, ball mill cyclone
overflow product, pre-leach thickener feed, leach
feed and silt material obtained from the mineral
processing plant of Gold Fields Ghana Limited
(GFGL).The silt samples were obtained from a
17.1 x 15.8 m (height x diameter) drained leaching
tank.

2.2 Methods

Screen analysis, settling rate test and agitator
efficiency analysis were carried out on the
metallurgical plant whiles grind analysis and
deflocculation test were carried out in the Minerals
Engineering laboratory of University of Mines and
Technology.

2.2.1 Screen Analysis

Wet screening was conducted on four randomly
sampled silt material to access the particle size
distribution of the silt materials. The nest of screens
used were built according to the Tyler series with
6700 pm as the coarsest screen aperture size and
106 pum, the lowest. Ball mill cyclone overflow
sample, composited for a period of two weeks, was
wet-screened using a 106 um screen to determine
the percentage passing 106 pm.

2.2.2 Settling Rate Test

Settling rate tests were conducted on the SAG and
ball mill cyclone overflow samples and the
thickener feed in a graduated 1000-ml measuring
cylinder for a period of 40 minutes by monitoring
the change in slurry boundary at 30 seconds
intervals. The results were plotted graphically and
equation of the curve generated to extend the time
on the settling curve using exponential decay
curves. The experiment was run in triplicate.
Settling velocities of the samples together with a
standard sample milled to 80% passing 106 pm
were determined.

2.2.3 Agitation Efficiency Analysis

Measurements were taken on a fresh agitator blade
and a worn out blade using an engineering tape.
Design measurement of the leaching tank
(diameter, height, freeboard and agitator off-bottom

52

distance) was obtained and inference drawn from
them. Visual observation was conducted in a
drained tank containing silt material.

2.2.4 Grind Analysis

Ball mill feed samples from the plant which
comprises of the SAG mill cyclone underflow and
the ball mill cyclone underflow were milled at 65%
pulp with reference to the milling pulp density of
the processing plant, for 5, 10, 15 and 20 minutes.
Initial percent passing 106 um of the ball mill feed
sample was estimated via wet screening. Final
milled products obtained were wet screened and the
percentage passing 106 um screen aperture size,
estimated.

2.2.5 Deflocculation Test

One kilogram dry mass of leach feed sample
having particle size distribution of (+ 220 um -75
pm) was pulped to 56% to obtain material with
pulp density similar to that of the metallurgical
plant. Settling rate tests were conducted on the
sample for 60 minutes without deflocculant
addition and the fall in slurry boundary noted every
2 minutes. This was to serve as a control for the
subsequent experiment, which was replicated using
caustic as a deflocculant at different concentrations
for 60 minutes and the fall in slurry boundary
monitored for every 2 minutes. The equation of the
curve was generated and time extended to plot
settling curves using exponential decay curves.

3 Results and Discussion

3.1 Screen Analysis of Silt

The particle size distribution of the silt materials
was investigated and Fig. 1 shows the cumulative
percentage passing for the various screen sizes.
This reflects the various size ranges of particles in
the silt material, and the coarse nature gives a clear
indication of the poor grinding and classification
processes. The 80% passing size of the silt material
was estimated to be 1700 pm which is far higher
than the design size range (Pg of 106 pum) for
leaching. Indeed, 94% of the silt material had
particle size range above the design size of 106 um.
Coarser particle sizes impact adversely on particle
suspension by agitators due to the high drag forces
of such particles which gives them high settling
velocities, thus leading to siltation (Walsh, 1988).
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Fig. 1 Screen Analysis of Silt Material

3.2 Screen Analysis of Ball Mill Cyclone
Overflow

Following a 14-day campaign, the percentage of
material passing 106 pm for the ball mill cyclone
overflow, as shown in Fig. 2, indicates that 67% of
the feed particles had sizes less than 106 pm (P, of
106 um) instead of the design size of 80% passing
106 um (Pgy 106 pum). According to Fig. 2, only
two (2) out of the fourteen (14) samples were
within the design leach feed size. This situation
will put undue pressure on the agitators, hence
creating suspension inefficiencies and enhancing
feed particle siltation.

The coarse nature of the cyclone overflow may be
ascribed to several factors including short residence
time of feed materials in the ball mill as a result of
the dwindling gold grade and/or gold prices which
compels management to resort to processing high
tonnage with constant residence time of feed in the
mill to meet targeted tonnages. This in effect
produces coarse mill products (Konadu et al.,
2014).

Other contributing factors in the grinding circuit to
the coarse cyclone overflow include inefficient
classification by cyclones due to high tonnages and
cyclone pressures which at some times exceed the
design plant value of (120 — 130) kPa. The state of
mill liners may also affect grinding in cases of
severe wear.
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Fig. 2 Screen Analysis of Ball Mill Cyclone
Overflow
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3.3 Settling Rate Test

Fig. 3 (A to D) presents the effect of settling
velocity on particle siltation in various systems. In
all cases, settling velocity was high compared with
a standard feed particle size with Pgg of 106 um.
Settling velocity of the Ball Mill Cyclone Overflow
(BMCO) was the highest followed by the
Thickener Feed (TF) and the Sag Mill Cyclone
Overflow (SMCO). The average of all the settling
velocities of particles in these systems was high
compared with the standard settling velocity of
feed particle with Pgy of 106 pm. High settling
velocity of the BMCO is as a result of its coarse
nature, having an average of Pg; of 106 um. The
coarse nature gives it higher drag force which
enhances settling (Walsh, 1988). The SMCO was
expected to exhibit low settling velocity, but it
turned out to be high irrespective of its fine particle
size of 94% passing 106 um from a data received
from the plant. This can be attributed to high pH
values observed at the milling and classification
unit, which introduces negative charge densities on
the suspended particles nullifying the repulsive
forces and causing them to sediment faster (Ersoy,
2004). The pH values observed at the milling and
classification units were above 11.5 to as high as
13.75, which enhanced settling as the lime used in
pH modification aids settling when in excess. The
TF which is a blend of the BMCO and SMCO had
a higher settling velocity as well. Feed from the TF
undergoes flocculation which further increases its
settling velocity as a result of the flocculants
creating polymer bonds between feed particles and
thus producing lumps with higher drag forces
which causes fines to also settle. Such material,
when forwarded to the leaching tanks, sediments
faster leading to siltation due to some agitation
inefficiencies.

—curve | —curve 2 —curve 3

Settling Height (cm)
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Time (Min)

Fig. 3 (A) Ball Mill Cyclone Overflow Settling
Curve (BMCO). Curves 1,2 and 3 are

Results of Replicates
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3.4 Agitation Efficiency Analyses
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Analysis of design measurements obtained from
the plant indicated that, the off-bottom distance of
the agitator was 19 feet (5.8 m) as indicated in Fig
4. Other measurements recorded are detailed in
Table 4.2. Literature reveals that for maximum off-
bottom suspension of solids, an impeller location of
1/3 the impeller diameter blade may be satisfactory
(Anon, 2015). However, the off-bottom distance in
the leaching tank exceeds that in literature. The
diameter of the impeller blade was 5.2 m and from
literature its off-bottom was supposed to be 1.7 m
Fig. 3 (B) SAG Mill Cyclone Overflow Settling however, the off-bottom was 5.8 m which is three

Curve (SMCO). Curves 1,2 and 3 are times higher and hence affects mixing efficiency.

Results of Replicates By reducing distribution of radial and axial forces
introduced into the slurry by agitation, some areas
are left unmixed. Feed particles with higher settling
velocities located below the required off-bottom
— el —curve? —curve3 distance region are prone to settling leading to
siltation.
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Fig. 3 (C) Thickener Feed Settling Curve.
Curves 1, 2 and 3 are Results of

Replicates
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0035 = Fig 4 Agitator Off- Bottom
- 80
Fha | 70 Table 4.2Measurements taken from the Plant
g
Boos 0 S PARAMETERS MEASUREMENT (m)
i £ off-bottom distance of
il [ so E agitator 5.8
g 9 o % diameter of leach tank 15.8
e - height of leach tank 17.1
g ia freeboard of leach
001 e tank 0.6
length of fresh agitator
0005 = blade 2.6
length of worn out
0 . . = Lo agitator blade 2.3
BMCO SMCO TF AVERAGE ~ STANDARD perimeter Of fresh
Sample agitator blade 6.6
perimeter of worn out
Fig. 3 (D) Average Settling Velocities of agitator blade 5.0
Particles in Various Systems % wear of agitator
blade 24.3
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Agitators tend to wear out with time due to friction
between impeller blades and feed material as well
as the presence of reagents and chemicals in the
tank. Wearing of agitators affects mixing
efficiency, by reducing total perimeter covered by
the agitator. Such a situation favors siltation since
the agitator’s efficiency is reduced.

3.4.2 Observation

Visual observation in a drained tank showed that
agitators encounter mechanical failure such as
displacement (Fig. 5). Displacement of agitator
blades highly affects mixing by reducing diffusion
of radial and axial forces through the slurry causing
feed particles to sediment leading to siltation. In
Fig. 5, the displacement was on the lower impeller
blade which led to a high silt build up in the tank;
up to about 3 m.

Fig. 5 Mechanical Failure of an Agitator Blade
3.5 Grind Analysis

Fig. 6 indicates the effect of grinding residence
time on mill product. The initial percentage passing
106 pm of the circulating load at time zero was
13% and from the results it was seen to be
increasing with increasing grinding time. The trend
is similar to that presented by Song et al (2012).
With increasing residence time, the feed in the mill
achieves maximum abrasion and impact from
coarser feeds, steel balls and liners to cause particle
size reduction which enhances particle breakdown.
The required time for attaining 80% passing 106
pm was estimated by interpolating between 10
minutes and 15 minutes and it was found to be 12
minutes, 22 seconds. Increasing grinding time
would produce finer mill products with lower drag
forces which would enhance particle suspension at
an optimum pH by the agitator in the absence of

mechanical failure.
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Fig. 6 Grind Analysis of Mill Feed

3.6 Deflocculation Test

Figure 7 (A and B) shows the drop in settling
velocities of the leach feed upon addition of caustic
as a deflocculant. This is as a result of the
deflocculant creating a steric repulsion between the
particles and also breaking polymer bonds between
flocculants and feed particles. The deflocculant
increases zeta potential of the particles, decreasing
the attractive forces between the particles and in
effect increasing repulsive forces. This is as a result
of the presence of sodium ion in the deflocculant. It
increases the electrical double layer between
particles by being attracted by the negatively
charged feed particle and in effect creating
repulsion between neighbouring particles thus
keeping them in a state of suspension (Larsson et
al., 2012; Zchimmer and Schwarz, 2009). Settling
velocity was seen to reduce by 71% at 1000 ppm of
caustic with reduction decreasing as concentration
increased. At 10000 ppm, settling velocity reduced
by 14% as a result of higher percent solids and
deflocculant concentration leading to overlapping
and superimposition of =zeta potential of
neighbouring particles (Zchimmer and Schwarz,
2009).
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Fig 7 (A) Settling Curves obtained after
Deflocculation Test
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Deflocculant Addition

10000 ppm

EXED Vo!l. 16, No. 2, December, 2016




4 Conclusion

Factors leading to particle siltation in gold leaching
tanks and corresponding mitigation measures were
investigated. It is comprehensible from the
investigations that inefficient milling and
classification, high settling velocities and agitation
inefficiencies were the major factors leading to
siltation. The result showed that the average
percentage passing size for the ball mill cyclone
overflow was 67% passing 106 pm instead of 80%
passing. The average settling velocity of the ore
was also estimated to be 5.67*¥10° m/s. The
efficiency of the agitator was also assessed with
reference to its off-bottom distance which was 5.8
m, three times higher than an expected distance of
1.7 m. Mechanical failures and design
measurements also contributed to the inefficiency
of the agitator. However a drastic decrease in
settling velocity was accomplished when caustic
was used as a deflocculant at 1000 ppm. The

results of this study therefore reveal that
deflocculation and finer grinding are options for
mitigating  siltation in gold leaching tanks

considering its causative factors. The authors thus
propose the use of finer grinding and deflocculation
as strategies to remediate siltation in gold mineral
processing plants.
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